IoT Technologies in Chemical Analysis Systems: Application to Potassium Monitoring in Water

The in-line determination of chemical parameters in water is of capital importance for environmental reasons. It must be carried out frequently and at a multitude of points; thus, the ideal method is to utilize automated monitoring systems, which use sensors based on many transducers, such as Ion Se...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 3; p. 842
Main Authors Campelo, José C, Capella, Juan V, Ors, Rafael, Peris, Miguel, Bonastre, Alberto
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 22.01.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The in-line determination of chemical parameters in water is of capital importance for environmental reasons. It must be carried out frequently and at a multitude of points; thus, the ideal method is to utilize automated monitoring systems, which use sensors based on many transducers, such as Ion Selective Electrodes (ISE). These devices have multiple advantages, but their management via traditional methods (i.e., manual sampling and measurements) is rather complex. Wireless Sensor Networks have been used in these environments, but there is no standard way to take advantage of the benefits of new Internet of Things (IoT) environments. To deal with this, an IoT-based generic architecture for chemical parameter monitoring systems is proposed and applied to the development of an intelligent potassium sensing system, and this is described in detail in this paper. This sensing system provides fast and simple deployment, interference rejection, increased reliability, and easy application development. Therefore, in this paper, we propose a method that takes advantage of Cloud services by applying them to the development of a potassium smart sensing system, which is integrated into an IoT environment for use in water monitoring applications. The results obtained are in good agreement (correlation coefficient = 0.9942) with those of reference methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22030842