Diversity of Macrophages in Lung Homeostasis and Diseases
Lung macrophages play important roles in the maintenance of homeostasis, pathogen clearance and immune regulation. The different types of pulmonary macrophages and their roles in lung diseases have attracted attention in recent years. Alveolar macrophages (AMs), including tissue-resident alveolar ma...
Saved in:
Published in | Frontiers in immunology Vol. 12; p. 753940 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
24.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lung macrophages play important roles in the maintenance of homeostasis, pathogen clearance and immune regulation. The different types of pulmonary macrophages and their roles in lung diseases have attracted attention in recent years. Alveolar macrophages (AMs), including tissue-resident alveolar macrophages (TR-AMs) and monocyte-derived alveolar macrophages (Mo-AMs), as well as interstitial macrophages (IMs) are the major macrophage populations in the lung and have unique characteristics in both steady-state conditions and disease states. The different characteristics of these three types of macrophages determine the different roles they play in the development of disease. Therefore, it is important to fully understand the similarities and differences among these three types of macrophages for the study of lung diseases. In this review, we will discuss the physiological characteristics and unique functions of these three types of macrophages in acute and chronic lung diseases. We will also discuss possible methods to target macrophages in lung diseases. |
---|---|
AbstractList | Lung macrophages play important roles in the maintenance of homeostasis, pathogen clearance and immune regulation. The different types of pulmonary macrophages and their roles in lung diseases have attracted attention in recent years. Alveolar macrophages (AMs), including tissue-resident alveolar macrophages (TR-AMs) and monocyte-derived alveolar macrophages (Mo-AMs), as well as interstitial macrophages (IMs) are the major macrophage populations in the lung and have unique characteristics in both steady-state conditions and disease states. The different characteristics of these three types of macrophages determine the different roles they play in the development of disease. Therefore, it is important to fully understand the similarities and differences among these three types of macrophages for the study of lung diseases. In this review, we will discuss the physiological characteristics and unique functions of these three types of macrophages in acute and chronic lung diseases. We will also discuss possible methods to target macrophages in lung diseases.Lung macrophages play important roles in the maintenance of homeostasis, pathogen clearance and immune regulation. The different types of pulmonary macrophages and their roles in lung diseases have attracted attention in recent years. Alveolar macrophages (AMs), including tissue-resident alveolar macrophages (TR-AMs) and monocyte-derived alveolar macrophages (Mo-AMs), as well as interstitial macrophages (IMs) are the major macrophage populations in the lung and have unique characteristics in both steady-state conditions and disease states. The different characteristics of these three types of macrophages determine the different roles they play in the development of disease. Therefore, it is important to fully understand the similarities and differences among these three types of macrophages for the study of lung diseases. In this review, we will discuss the physiological characteristics and unique functions of these three types of macrophages in acute and chronic lung diseases. We will also discuss possible methods to target macrophages in lung diseases. Lung macrophages play important roles in the maintenance of homeostasis, pathogen clearance and immune regulation. The different types of pulmonary macrophages and their roles in lung diseases have attracted attention in recent years. Alveolar macrophages (AMs), including tissue-resident alveolar macrophages (TR-AMs) and monocyte-derived alveolar macrophages (Mo-AMs), as well as interstitial macrophages (IMs) are the major macrophage populations in the lung and have unique characteristics in both steady-state conditions and disease states. The different characteristics of these three types of macrophages determine the different roles they play in the development of disease. Therefore, it is important to fully understand the similarities and differences among these three types of macrophages for the study of lung diseases. In this review, we will discuss the physiological characteristics and unique functions of these three types of macrophages in acute and chronic lung diseases. We will also discuss possible methods to target macrophages in lung diseases. |
Author | Hou, Fei Xiao, Kun Tang, Li Xie, Lixin |
AuthorAffiliation | 3 State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences·Beijing, Beijing Institute of Lifeomics , Beijing , China 1 College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital , Beijing , China 2 Medical School of Chinese PLA , Beijing , China |
AuthorAffiliation_xml | – name: 2 Medical School of Chinese PLA , Beijing , China – name: 3 State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences·Beijing, Beijing Institute of Lifeomics , Beijing , China – name: 1 College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital , Beijing , China |
Author_xml | – sequence: 1 givenname: Fei surname: Hou fullname: Hou, Fei – sequence: 2 givenname: Kun surname: Xiao fullname: Xiao, Kun – sequence: 3 givenname: Li surname: Tang fullname: Tang, Li – sequence: 4 givenname: Lixin surname: Xie fullname: Xie, Lixin |
BookMark | eNp1kU9PHCEYxkmjUat-gN7m6GW3DC_DDBcTo2012caLngl_XlbMzLDCjMl-e1nXJrVJuUDgeX488HwlB2MckZBvNV0CdPK7D8MwLxll9bJtQHL6hZzUQvAFMMYP_lofk_Ocn2kZXAJAc0SOgQugHOCEyJvwiimHaVtFX_3WNsXNk15jrsJYreZxXd3GAWOedA650qOrbkJGnTGfkUOv-4znH_Mpefz54-H6drG6_3V3fbVa2IZ206IxzjvpHHacUjCdF9hJyyU65lovjGRgjOOIrhVGSCsY163VFqRkTcc4nJK7PddF_aw2KQw6bVXUQb1vxLRWOk3B9qi0cdYzShtZXsdouaw2TjhpEDW0Hgrrcs_azGZAZ3Gcku4_QT-fjOFJreOr6poSXu4AFx-AFF9mzJMaQrbY93rEOGdVIlPJRREXabuXli_NOaFXNkx6CnFHDr2qqdr1qN57VLse1b7H4qz_cf4J-H_PG0Ppo3Q |
CitedBy_id | crossref_primary_10_1007_s00204_023_03514_3 crossref_primary_10_1016_j_pupt_2023_102263 crossref_primary_10_1016_j_taap_2024_117083 crossref_primary_10_1016_j_intimp_2024_111791 crossref_primary_10_1080_17425247_2023_2260310 crossref_primary_10_3390_toxics12080530 crossref_primary_10_1002_adbi_202300165 crossref_primary_10_1097_CM9_0000000000003341 crossref_primary_10_1002_advs_202416594 crossref_primary_10_3389_fimmu_2024_1490478 crossref_primary_10_1007_s00281_022_00931_x crossref_primary_10_1016_j_celrep_2024_113751 crossref_primary_10_1016_j_intimp_2022_109476 crossref_primary_10_3389_fimmu_2022_1050188 crossref_primary_10_3390_ijms251810107 crossref_primary_10_1038_s41392_022_01106_8 crossref_primary_10_3389_fimmu_2023_1119564 crossref_primary_10_1186_s12964_023_01337_4 crossref_primary_10_3390_jof9060617 crossref_primary_10_1016_j_tiv_2024_105841 crossref_primary_10_3389_fcimb_2023_1062963 crossref_primary_10_1002_adtp_202400057 crossref_primary_10_1016_j_addr_2023_114831 crossref_primary_10_3389_fimmu_2022_1029085 crossref_primary_10_1172_JCI170501 crossref_primary_10_3389_fimmu_2024_1379376 crossref_primary_10_1016_j_intimp_2022_109012 crossref_primary_10_2147_JIR_S377499 crossref_primary_10_14336_AD_2022_1202 crossref_primary_10_1016_j_rmed_2022_107035 crossref_primary_10_3389_fimmu_2022_923235 crossref_primary_10_1155_2022_2154485 crossref_primary_10_1002_adhm_202300226 crossref_primary_10_1016_j_reth_2024_03_014 crossref_primary_10_4110_in_2023_23_e24 crossref_primary_10_1183_16000617_0259_2023 crossref_primary_10_3389_fimmu_2024_1371764 crossref_primary_10_1016_j_jep_2022_115568 crossref_primary_10_3389_fimmu_2024_1455009 crossref_primary_10_1016_j_crtox_2024_100163 crossref_primary_10_1016_j_intimp_2022_108965 crossref_primary_10_1038_s41540_024_00450_5 crossref_primary_10_1038_s41590_023_01661_4 crossref_primary_10_1165_rcmb_2022_0056OC crossref_primary_10_1016_j_mrgentox_2024_503807 crossref_primary_10_1016_j_carbpol_2024_122571 crossref_primary_10_3389_fimmu_2023_1254276 crossref_primary_10_1016_j_biopha_2024_117246 crossref_primary_10_1016_j_apsb_2023_12_018 crossref_primary_10_3390_pathogens11101153 crossref_primary_10_1007_s10753_024_01983_x crossref_primary_10_1080_21645515_2024_2368288 crossref_primary_10_3390_ijms241612557 crossref_primary_10_1016_j_intimp_2023_109706 crossref_primary_10_3390_v15112272 crossref_primary_10_1016_j_ijbiomac_2025_139550 crossref_primary_10_4110_in_2022_22_e40 crossref_primary_10_1016_j_envint_2024_108701 crossref_primary_10_12677_acm_2025_153777 crossref_primary_10_3389_fimmu_2022_1059725 crossref_primary_10_3389_fimmu_2023_1238132 crossref_primary_10_3390_ijms23105414 crossref_primary_10_1016_j_freeradbiomed_2023_03_007 crossref_primary_10_1183_16000617_0263_2023 crossref_primary_10_3390_biomedicines12030632 crossref_primary_10_3390_ph15101276 crossref_primary_10_18231_j_achr_2023_021 crossref_primary_10_3389_fimmu_2023_1186393 crossref_primary_10_4049_immunohorizons_2300107 crossref_primary_10_2147_JIR_S490457 crossref_primary_10_1186_s12931_024_02815_0 crossref_primary_10_1134_S160767292470114X crossref_primary_10_3724_zdxbyxb_2024_0129 crossref_primary_10_1016_j_biopha_2022_113532 crossref_primary_10_1186_s44149_023_00095_7 crossref_primary_10_3390_cells13171407 crossref_primary_10_1002_advs_202405490 crossref_primary_10_3390_v15020525 crossref_primary_10_1007_s43188_023_00224_x crossref_primary_10_4110_in_2023_23_e42 crossref_primary_10_1158_0008_5472_CAN_23_0258 crossref_primary_10_1155_2022_5236908 crossref_primary_10_1002_eji_202249980 crossref_primary_10_1016_j_omtn_2024_102375 crossref_primary_10_1038_s41419_023_06318_6 crossref_primary_10_1002_pro_4562 crossref_primary_10_3389_fimmu_2023_1268939 crossref_primary_10_1183_20734735_0169_2023 crossref_primary_10_1016_j_ccell_2024_05_004 crossref_primary_10_1002_jbt_23460 crossref_primary_10_1038_s41467_024_51683_1 crossref_primary_10_1002_1878_0261_13618 crossref_primary_10_1016_j_biocel_2021_106095 crossref_primary_10_1111_imm_13688 crossref_primary_10_1002_jbt_70057 crossref_primary_10_1016_j_clim_2023_109639 crossref_primary_10_1016_j_bbrc_2023_02_029 crossref_primary_10_1016_j_ejps_2023_106596 crossref_primary_10_1002_adbi_202400119 crossref_primary_10_3390_ijms242115773 crossref_primary_10_3390_v15101999 crossref_primary_10_1002_cyto_a_24739 crossref_primary_10_3389_fmicb_2023_1260543 crossref_primary_10_1096_fj_202301722R crossref_primary_10_3389_fonc_2024_1412296 crossref_primary_10_1177_09603271241249990 crossref_primary_10_3389_fimmu_2024_1374670 crossref_primary_10_1080_22221751_2024_2387450 crossref_primary_10_3390_cells12071092 crossref_primary_10_1016_j_jep_2025_119420 crossref_primary_10_3390_ijms241310451 crossref_primary_10_1272_jnms_JNMS_2024_91_113 crossref_primary_10_3389_fimmu_2023_1111298 crossref_primary_10_3390_ijms25158392 crossref_primary_10_1002_advs_202308978 crossref_primary_10_3389_fimmu_2024_1488913 crossref_primary_10_3389_fcell_2022_927300 crossref_primary_10_1021_jacs_4c09695 crossref_primary_10_1186_s13071_024_06144_5 crossref_primary_10_1016_j_intimp_2023_110328 crossref_primary_10_1016_j_mtbio_2023_100897 crossref_primary_10_1080_02770903_2024_2386634 crossref_primary_10_1084_jem_20220759 crossref_primary_10_3389_fimmu_2022_1054477 |
Cites_doi | 10.1038/s41590-019-0582-z 10.1016/j.cell.2021.01.053 10.1186/1465-9921-6-61 10.1016/j.addr.2017.04.010 10.1016/j.ajpath.2011.03.013 10.1165/rcmb.2017-0061OC 10.1111/imm.12910 10.1172/JCI39717 10.1007/s00134-007-0651-x 10.1126/science.aad5510 10.3389/fimmu.2012.00004 10.1084/jem.20121849 10.1097/SHK.0b013e31815d0c8f 10.1101/2020.07.09.196519 10.1038/s41564-019-0444-3 10.1165/rcmb.2019-0244OC 10.1084/jem.20131199 10.1038/s41590-020-00849-2 10.1038/s41590-018-0276-y 10.1016/j.immuni.2014.06.013 10.4049/jimmunol.180.4.2562 10.1016/j.immuni.2021.06.012 10.1038/nri3786 10.1126/sciimmunol.aax8756 10.1016/j.jaci.2020.10.005 10.1172/JCI200522675 10.1172/JCI0211638 10.1073/pnas.1400593111 10.1038/srep35466 10.1126/science.aau0964 10.1038/nrd.2018.169 10.1016/j.biomaterials.2018.10.017 10.1016/j.immuni.2012.03.010 10.1016/j.cell.2020.08.020 10.1016/j.immuni.2013.02.012 10.1146/annurev-immunol-032712-095906 10.1016/j.immuni.2013.04.004 10.1128/JVI.02541-07 10.1164/rccm.201011-1891OC 10.1016/j.jaci.2015.09.031 10.1164/rccm.202005-1989OC 10.1111/all.12536 10.1016/j.cell.2018.09.042 10.1172/jci.insight.133042 10.1038/s41467-020-17630-6 10.1084/jem.20080201 10.1183/13993003.02120-2017 10.1084/jem.20162152 10.1002/JLB.3RU0720-418R 10.1111/imr.12220 10.1126/sciimmunol.abc1884 10.1038/nature13989 10.1126/sciimmunol.aau3814 10.1164/rccm.200812-1837OC 10.1016/j.immuni.2017.10.007 10.1016/j.cell.2018.09.009 10.1016/j.cell.2019.08.009 10.4049/jimmunol.167.8.4368 10.1164/rccm.201009-1431OC 10.1016/j.immuni.2016.02.015 10.1172/JCI60363 10.1002/path.1667 10.1084/jem.20191236 10.1056/NEJMra023226 10.1016/j.celrep.2018.11.059 10.1038/nm.2048 10.1038/mi.2015.34 10.1164/rccm.201908-1683LE 10.1172/jci.insight.126556 10.15252/embj.2018101233 10.1136/thoraxjnl-2015-207020 10.1038/s41467-019-11843-0 10.1016/j.celrep.2020.02.112 10.1038/ni.3005 10.1016/j.chom.2018.08.001 10.1016/j.immuni.2017.02.016 10.1038/nri3600 10.1016/j.cell.2021.02.029 10.3389/fimmu.2011.00065 10.1038/s41586-020-03148-w 10.1126/science.1142883 10.1038/s41591-020-0901-9 10.1016/S1074-7613(01)00218-7 10.1038/s41590-019-0568-x 10.1371/journal.ppat.1007338 10.1016/j.jconrel.2018.08.014 10.1016/j.jaci.2017.04.049 10.1038/ni.3857 10.1016/j.immuni.2015.03.011 10.1073/pnas.1406508111 10.1002/eji.201040801 10.1165/rcmb.2017-0154OC 10.1172/JCI66142 10.1016/j.cell.2020.05.006 10.1164/rccm.201112-2132OC 10.1126/sciimmunol.aba7350 10.1038/s41467-019-10903-9 10.1164/rccm.201507-1376OC 10.1183/13993003.00103-2018 10.4049/jimmunol.1700397 10.1182/blood-2015-01-624809 10.1016/j.cca.2019.10.034 10.1038/s41577-020-0331-4 10.4049/jimmunol.1400580 10.1038/nn.3469 10.1164/rccm.201911-2105OC 10.1016/j.chom.2020.07.019 10.1165/rcmb.2016-0361OC 10.1038/s41590-020-0764-8 10.1038/s41590-019-0352-y 10.3389/fimmu.2020.611749 10.1128/IAI.01299-10 10.1016/j.immuni.2017.10.006 10.1128/iai.65.4.1139-1146.1997 10.1165/rcmb.2017-0261OC 10.1111/all.13852 10.1183/13993003.03764-2020 10.1183/13993003.00646-2019 10.1016/j.immuni.2021.03.005 10.1038/s41590-020-0673-x 10.3389/fimmu.2020.01625 10.1084/jem.20130028 10.1016/j.jaci.2021.01.026 10.1172/JCI125505 10.1038/nature12902 10.1183/13993003.02590-2017 10.1016/j.it.2020.08.008 10.1242/dev.129122 10.1016/j.immuni.2020.12.003 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Hou, Xiao, Tang and Xie. Copyright © 2021 Hou, Xiao, Tang and Xie 2021 Hou, Xiao, Tang and Xie |
Copyright_xml | – notice: Copyright © 2021 Hou, Xiao, Tang and Xie. – notice: Copyright © 2021 Hou, Xiao, Tang and Xie 2021 Hou, Xiao, Tang and Xie |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fimmu.2021.753940 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-3224 |
ExternalDocumentID | oai_doaj_org_article_abdcf2005930420b8f1bd6d9beea37f3 PMC8500393 10_3389_fimmu_2021_753940 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM 7X8 5PM |
ID | FETCH-LOGICAL-c508t-5bdfd9dde84003b8f6e89c49ed2d7f6b923bbd4eed76b69c624a7cac399258243 |
IEDL.DBID | M48 |
ISSN | 1664-3224 |
IngestDate | Wed Aug 27 01:13:35 EDT 2025 Thu Aug 21 14:31:30 EDT 2025 Fri Jul 11 10:08:20 EDT 2025 Thu Apr 24 23:03:19 EDT 2025 Tue Jul 01 00:53:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-5bdfd9dde84003b8f6e89c49ed2d7f6b923bbd4eed76b69c624a7cac399258243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Na Xie, Independent Researcher, Chengdu, China; Rahul Mahida, University of Birmingham, United Kingdom; Stephen Tung Yeung, Cornell University, United States Edited by: Chaofeng Han, Second Military Medical University, China These authors have contributed equally to this work This article was submitted to Molecular Innate Immunity, a section of the journal Frontiers in Immunology |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fimmu.2021.753940 |
PMID | 34630433 |
PQID | 2580946003 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_abdcf2005930420b8f1bd6d9beea37f3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8500393 proquest_miscellaneous_2580946003 crossref_citationtrail_10_3389_fimmu_2021_753940 crossref_primary_10_3389_fimmu_2021_753940 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-24 |
PublicationDateYYYYMMDD | 2021-09-24 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-24 day: 24 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in immunology |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Pribul (B52) 2008; 82 Byrne (B1) 2015; 70 Aegerter (B42) 2020; 21 Aran (B105) 2019; 20 Lou (B73) 2019; 74 Ariel (B58) 2012; 3 Desch (B21) 2016; 193 Mould (B9) 2017; 57 Mccubbrey (B120) 2018; 58 Huynh (B61) 2002; 109 Miron (B17) 2013; 16 Hoeffel (B31) 2015; 42 Dhaliwal (B100) 2012; 186 Auffray (B86) 2007; 317 Joshi (B7) 2020; 55 Narasaraju (B67) 2011; 179 Zhou (B79) 2018; 141 Misharin (B8) 2017; 214 Mukundan (B57) 2009; 15 Cassetta (B126) 2018; 17 Zasłona (B25) 2014; 193 Moore (B121) 2001; 167 Miki (B76) 2020; 147 Szabo (B98) 2021; 54 Martin (B65) 2011; 79 Bost (B96) 2020; 181 Rauschmeier (B37) 2019; 38 Okuma (B122) 2004; 204 Cohen (B64) 2016; 6 Pernet (B92) 2019; 4 Nakamura (B28) 2013; 210 Hussell (B4) 2014; 14 Guilliams (B5) 2021; 22 Uderhardt (B56) 2012; 36 Lin (B90) 2008; 180 Meziani (B119) 2018; 51 Broug-Holub (B66) 1997; 65 Yang (B125) 2020; 501 Cohen (B68) 2013; 123 Kulikauskaite (B6) 2020; 41 Machiels (B104) 2017; 18 Zhou (B115) 2020; 21 Guillon (B82) 2020; 5 Yao (B38) 2020; 11 Ren (B95) 2021; 184 Hashimoto (B40) 2013; 38 Fahy (B72) 2015; 15 Keerthivasan (B114) 2021; 54 Schyns (B111) 2019; 10 Janssen (B26) 2011; 184 Byrne (B45) 2020; 217 Van Dyken (B74) 2013; 31 Bedoret (B117) 2009; 119 Bonaventura (B129) 2020; 11 Eyal (B71) 2007; 33 Wong (B47) 2017; 199 Chen (B127) 2019; 195 Mathie (B77) 2015; 70 Svedberg (B75) 2019; 20 Santos (B69) 2020; 57 Roberts (B29) 2017; 47 Pahuja (B84) 2008; 29 Borthwick (B103) 2016; 9 Merad (B130) 2020; 20 Chakarov (B110); 363 Westphalen (B13) 2014; 506 Ural (B113) 2020; 5 Epelman (B85) 2014; 41 Shibata (B35) 2001; 15 Woods (B23) 2019; 62 Naessens (B36) 2016; 137 Beck-Schimmer (B51) 2005; 6 Cakarova (B60) 2009; 180 Su (B128) 2018; 287 Mould (B22) 2019; 4 Lai (B43) 2018; 25 Duffield (B15) 2005; 115 Grégoire (B62) 2018; 52 O’beirne (B48) 2020; 201 Hume (B20) 2020; 201 Shibata (B80) 2020; 130 Teijaro (B91) 2014; 111 Schif-Zuck (B101) 2011; 41 Trapnell (B27) 2003; 349 Sabatel (B116) 2017; 46 Herold (B89) 2008; 205 Mccubbrey (B108) 2018; 58 Cohen (B70) 2018; 24 Schultze (B99) 2021; 184 Kumaran Satyanarayanan (B102) 2019; 10 Joshi (B10) 2020; 30 Grant (B97) 2021; 590 Shi (B2) 2021; 110 Jondle (B63) 2018; 14 Liu (B12) 2020; 28 Xu-Vanpala (B53) 2020; 5 Gomez Perdiguero (B30) 2015; 518 Evren (B44) 2020; 54 Guilliams (B32) 2013; 210 Gibbings (B24) 2015; 126 Liu (B88) 2019; 178 Ngambenjawong (B123) 2017; 114 Branchett (B59) 2021; 147 Lavine (B14) 2014; 111 Zhou (B19) 2018; 51 Mould (B46) 2020; 203 Soroosh (B78) 2013; 210 Ogger (B3) 2020; 5 Neupane (B50) 2020; 183 Schneider (B34) 2014; 15 Liao (B93) 2020; 26 Tan (B112) 2016; 143 Roquilly (B49) 2020; 21 Zhang (B16) 2012; 122 Herold (B11) 2011; 183 Fastrès (B107) 2020; 11 Sajti (B106) 2020; 21 Yu (B33) 2017; 47 Scott (B87) 2014; 262 Gibbings (B109) 2017; 57 Krljanac (B118) 2019; 4 Soucie (B41) 2016; 351 Wauters (B94) 2021; 31 Herold (B54) 2011; 2 Shechter (B18) 2013; 38 Cohen (B39) 2018; 175 Hiruma (B83) 2018; 59 Yao (B81) 2018; 175 Funes (B124) 2018; 154 Wynn (B55) 2016; 44 |
References_xml | – volume: 21 year: 2020 ident: B106 article-title: Transcriptomic and Epigenetic Mechanisms Underlying Myeloid Diversity in the Lung publication-title: Nat Immunol doi: 10.1038/s41590-019-0582-z – volume: 184 start-page: 1895 year: 2021 ident: B95 article-title: COVID-19 Immune Features Revealed by a Large-Scale Single-Cell Transcriptome Atlas publication-title: Cell doi: 10.1016/j.cell.2021.01.053 – volume: 6 start-page: 61 year: 2005 ident: B51 article-title: Alveolar Macrophages Regulate Neutrophil Recruitment in Endotoxin-Induced Lung Injury publication-title: Respir Res doi: 10.1186/1465-9921-6-61 – volume: 114 year: 2017 ident: B123 article-title: Progress in Tumor-Associated Macrophage (TAM)-Targeted Therapeutics publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2017.04.010 – volume: 179 start-page: 199 year: 2011 ident: B67 article-title: Excessive Neutrophils and Neutrophil Extracellular Traps Contribute to Acute Lung Injury of Influenza Pneumonitis publication-title: Am J Pathol doi: 10.1016/j.ajpath.2011.03.013 – volume: 57 start-page: 294 year: 2017 ident: B9 article-title: Cell Origin Dictates Programming of Resident Versus Recruited Macrophages During Acute Lung Injury publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2017-0061OC – volume: 154 year: 2018 ident: B124 article-title: Implications of Macrophage Polarization in Autoimmunity publication-title: Immunology doi: 10.1111/imm.12910 – volume: 119 year: 2009 ident: B117 article-title: Lung Interstitial Macrophages Alter Dendritic Cell Functions to Prevent Airway Allergy in Mice publication-title: J Clin Invest doi: 10.1172/JCI39717 – volume: 33 year: 2007 ident: B71 article-title: Reduction in Alveolar Macrophages Attenuates Acute Ventilator Induced Lung Injury in Rats publication-title: Intensive Care Med doi: 10.1007/s00134-007-0651-x – volume: 351 start-page: aad5510 year: 2016 ident: B41 article-title: Lineage-Specific Enhancers Activate Self-Renewal Genes in Macrophages and Embryonic Stem Cells publication-title: Science doi: 10.1126/science.aad5510 – volume: 3 year: 2012 ident: B58 article-title: New Lives Given by Cell Death: Macrophage Differentiation Following Their Encounter With Apoptotic Leukocytes During the Resolution of Inflammation publication-title: Front Immunol doi: 10.3389/fimmu.2012.00004 – volume: 210 year: 2013 ident: B78 article-title: Lung-Resident Tissue Macrophages Generate Foxp3+ Regulatory T Cells and Promote Airway Tolerance publication-title: J Exp Med doi: 10.1084/jem.20121849 – volume: 29 year: 2008 ident: B84 article-title: Alveolar Macrophage Suppression in Sepsis Is Associated With High Mobility Group Box 1 Transmigration publication-title: Shock doi: 10.1097/SHK.0b013e31815d0c8f – volume: 31 year: 2021 ident: B94 article-title: Discriminating Mild From Critical COVID-19 by Innate and Adaptive Immune Single-Cell Profiling of Bronchoalveolar Lavages publication-title: Cell Res doi: 10.1101/2020.07.09.196519 – volume: 4 year: 2019 ident: B92 article-title: Leukotriene B(4)-Type I Interferon Axis Regulates Macrophage-Mediated Disease Tolerance to Influenza Infection publication-title: Nat Microbiol doi: 10.1038/s41564-019-0444-3 – volume: 62 year: 2019 ident: B23 article-title: Tissue Resident Alveolar Macrophages Do Not Rely on Glycolysis for LPS-Induced Inflammation publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2019-0244OC – volume: 210 year: 2013 ident: B32 article-title: Alveolar Macrophages Develop From Fetal Monocytes That Differentiate Into Long-Lived Cells in the First Week of Life via GM-CSF publication-title: J Exp Med doi: 10.1084/jem.20131199 – volume: 22 year: 2021 ident: B5 article-title: Does Tissue Imprinting Restrict Macrophage Plasticity publication-title: Nat Immunol doi: 10.1038/s41590-020-00849-2 – volume: 20 year: 2019 ident: B105 article-title: Reference-Based Analysis of Lung Single-Cell Sequencing Reveals a Transitional Profibrotic Macrophage publication-title: Nat Immunol doi: 10.1038/s41590-018-0276-y – volume: 41 start-page: 21 year: 2014 ident: B85 article-title: Origin and Functions of Tissue Macrophages publication-title: Immunity doi: 10.1016/j.immuni.2014.06.013 – volume: 180 year: 2008 ident: B90 article-title: CCR2+ Monocyte-Derived Dendritic Cells and Exudate Macrophages Produce Influenza-Induced Pulmonary Immune Pathology and Mortality publication-title: J Immunol (Baltimore Md.: 1950) doi: 10.4049/jimmunol.180.4.2562 – volume: 54 start-page: 1511 year: 2021 ident: B114 article-title: Homeostatic Functions of Monocytes and Interstitial Lung Macrophages Are Regulated via Collagen Domain-Binding Receptor LAIR1 publication-title: Immunity doi: 10.1016/j.immuni.2021.06.012 – volume: 15 start-page: 57 year: 2015 ident: B72 article-title: Type 2 Inflammation in Asthma–Present in Most, Absent in Many publication-title: Nat Rev Immunol doi: 10.1038/nri3786 – volume: 5 start-page: eaax8756 year: 2020 ident: B113 article-title: Identification of a Nerve-Associated, Lung-Resident Interstitial Macrophage Subset With Distinct Localization and Immunoregulatory Properties publication-title: Sci Immunol doi: 10.1126/sciimmunol.aax8756 – volume: 147 start-page: 1087 year: 2020 ident: B76 article-title: Clearance of Apoptotic Cells by Lung Alveolar Macrophages Prevents Development of House Dust Mite-Induced Asthmatic Lung Inflammation publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2020.10.005 – volume: 115 start-page: 56 year: 2005 ident: B15 article-title: Selective Depletion of Macrophages Reveals Distinct, Opposing Roles During Liver Injury and Repair publication-title: J Clin Invest doi: 10.1172/JCI200522675 – volume: 109 start-page: 41 year: 2002 ident: B61 article-title: Phosphatidylserine-Dependent Ingestion of Apoptotic Cells Promotes TGF-Beta1 Secretion and the Resolution of Inflammation publication-title: J Clin Invest doi: 10.1172/JCI0211638 – volume: 111 year: 2014 ident: B91 article-title: Mapping the Innate Signaling Cascade Essential for Cytokine Storm During Influenza Virus Infection publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1400593111 – volume: 6 start-page: 35466 year: 2016 ident: B64 article-title: S. Aureus Blocks Efferocytosis of Neutrophils by Macrophages Through the Activity of Its Virulence Factor Alpha Toxin publication-title: Sci Rep doi: 10.1038/srep35466 – volume: 363 start-page: eaau0964 ident: B110 article-title: Two Distinct Interstitial Macrophage Populations Coexist Across Tissues in Specific Subtissular Niches publication-title: Science doi: 10.1126/science.aau0964 – volume: 17 start-page: 887 year: 2018 ident: B126 article-title: Targeting Macrophages: Therapeutic Approaches in Cancer publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2018.169 – volume: 195 start-page: 38 year: 2019 ident: B127 article-title: Glycan Targeted Polymeric Antibiotic Prodrugs for Alveolar Macrophage Infections publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.10.017 – volume: 36 year: 2012 ident: B56 article-title: 12/15-Lipoxygenase Orchestrates the Clearance of Apoptotic Cells and Maintains Immunologic Tolerance publication-title: Immunity doi: 10.1016/j.immuni.2012.03.010 – volume: 183 start-page: 110 year: 2020 ident: B50 article-title: Patrolling Alveolar Macrophages Conceal Bacteria From the Immune System to Maintain Homeostasis publication-title: Cell doi: 10.1016/j.cell.2020.08.020 – volume: 38 year: 2013 ident: B18 article-title: Recruitment of Beneficial M2 Macrophages to Injured Spinal Cord Is Orchestrated by Remote Brain Choroid Plexus publication-title: Immunity doi: 10.1016/j.immuni.2013.02.012 – volume: 31 year: 2013 ident: B74 article-title: Interleukin-4- and Interleukin-13-Mediated Alternatively Activated Macrophages: Roles in Homeostasis and Disease publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-032712-095906 – volume: 38 start-page: 792 year: 2013 ident: B40 article-title: Tissue-Resident Macrophages Self-Maintain Locally Throughout Adult Life With Minimal Contribution From Circulating Monocytes publication-title: Immunity doi: 10.1016/j.immuni.2013.04.004 – volume: 82 year: 2008 ident: B52 article-title: Alveolar Macrophages Are a Major Determinant of Early Responses to Viral Lung Infection But Do Not Influence Subsequent Disease Development publication-title: J Virol doi: 10.1128/JVI.02541-07 – volume: 184 year: 2011 ident: B26 article-title: Fas Determines Differential Fates of Resident and Recruited Macrophages During Resolution of Acute Lung Injury publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201011-1891OC – volume: 137 start-page: 700 year: 2016 ident: B36 article-title: GM-CSF Treatment Prevents Respiratory Syncytial Virus-Induced Pulmonary Exacerbation Responses in Postallergic Mice by Stimulating Alveolar Macrophage Maturation publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2015.09.031 – volume: 203 year: 2020 ident: B46 article-title: Airspace Macrophages and Monocytes Exist in Transcriptionally Distinct Subsets in Healthy Adults publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.202005-1989OC – volume: 70 year: 2015 ident: B77 article-title: Alveolar Macrophages Are Sentinels of Murine Pulmonary Homeostasis Following Inhaled Antigen Challenge publication-title: Allergy doi: 10.1111/all.12536 – volume: 175 start-page: 1634 year: 2018 ident: B81 article-title: Induction of Autonomous Memory Alveolar Macrophages Requires T Cell Help and Is Critical to Trained Immunity publication-title: Cell doi: 10.1016/j.cell.2018.09.042 – volume: 5 start-page: e133042 year: 2020 ident: B82 article-title: Pneumonia Recovery Reprograms the Alveolar Macrophage Pool publication-title: JCI Insight doi: 10.1172/jci.insight.133042 – volume: 11 start-page: 3822 year: 2020 ident: B38 article-title: Histone Deacetylase 3 Controls Lung Alveolar Macrophage Development and Homeostasis publication-title: Nat Commun doi: 10.1038/s41467-020-17630-6 – volume: 205 year: 2008 ident: B89 article-title: Lung Epithelial Apoptosis in Influenza Virus Pneumonia: The Role of Macrophage-Expressed TNF-Related Apoptosis-Inducing Ligand publication-title: J Exp Med doi: 10.1084/jem.20080201 – volume: 51 year: 2018 ident: B119 article-title: CSF1R Inhibition Prevents Radiation Pulmonary Fibrosis by Depletion of Interstitial Macrophages publication-title: Eur Respir J doi: 10.1183/13993003.02120-2017 – volume: 214 year: 2017 ident: B8 article-title: Monocyte-Derived Alveolar Macrophages Drive Lung Fibrosis and Persist in the Lung Over the Life Span publication-title: J Exp Med doi: 10.1084/jem.20162152 – volume: 110 year: 2021 ident: B2 article-title: Alveolar and Lung Interstitial Macrophages: Definitions, Functions, and Roles in Lung Fibrosis publication-title: J Leukoc Biol doi: 10.1002/JLB.3RU0720-418R – volume: 262 start-page: 9 year: 2014 ident: B87 article-title: Mononuclear Phagocytes of the Intestine, the Skin, and the Lung publication-title: Immunol Rev doi: 10.1111/imr.12220 – volume: 5 start-page: eabc1884 year: 2020 ident: B3 article-title: Itaconate Controls the Severity of Pulmonary Fibrosis publication-title: Sci Immunol doi: 10.1126/sciimmunol.abc1884 – volume: 518 year: 2015 ident: B30 article-title: Tissue-Resident Macrophages Originate From Yolk-Sac-Derived Erythro-Myeloid Progenitors publication-title: Nature doi: 10.1038/nature13989 – volume: 4 year: 2019 ident: B118 article-title: Relmα-Expressing Macrophages Protect Against Fatal Lung Damage and Reduce Parasite Burden During Helminth Infection publication-title: Sci Immunol doi: 10.1126/sciimmunol.aau3814 – volume: 180 year: 2009 ident: B60 article-title: Macrophage Tumor Necrosis Factor-Alpha Induces Epithelial Expression of Granulocyte-Macrophage Colony-Stimulating Factor: Impact on Alveolar Epithelial Repair publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.200812-1837OC – volume: 47 start-page: 903 year: 2017 ident: B33 article-title: The Cytokine Tgf-β Promotes the Development and Homeostasis of Alveolar Macrophages publication-title: Immun doi: 10.1016/j.immuni.2017.10.007 – volume: 175 start-page: 1031 year: 2018 ident: B39 article-title: Lung Single-Cell Signaling Interaction Map Reveals Basophil Role in Macrophage Imprinting publication-title: Cell doi: 10.1016/j.cell.2018.09.009 – volume: 178 start-page: 1509 year: 2019 ident: B88 article-title: Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells publication-title: Cell doi: 10.1016/j.cell.2019.08.009 – volume: 167 year: 2001 ident: B121 article-title: Protection From Pulmonary Fibrosis in the Absence of CCR2 Signaling publication-title: J Immunol doi: 10.4049/jimmunol.167.8.4368 – volume: 183 year: 2011 ident: B11 article-title: Exudate Macrophages Attenuate Lung Injury by the Release of IL-1 Receptor Antagonist in Gram-Negative Pneumonia publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201009-1431OC – volume: 44 year: 2016 ident: B55 article-title: Macrophages in Tissue Repair, Regeneration, and Fibrosis publication-title: Immunity doi: 10.1016/j.immuni.2016.02.015 – volume: 122 year: 2012 ident: B16 article-title: CSF-1 Signaling Mediates Recovery From Acute Kidney Injury publication-title: J Clin Invest doi: 10.1172/JCI60363 – volume: 204 start-page: 594 year: 2004 ident: B122 article-title: C-C Chemokine Receptor 2 (CCR2) Deficiency Improves Bleomycin-Induced Pulmonary Fibrosis by Attenuation of Both Macrophage Infiltration and Production of Macrophage-Derived Matrix Metalloproteinases publication-title: J Pathol doi: 10.1002/path.1667 – volume: 217 start-page: e20191236 year: 2020 ident: B45 article-title: Dynamics of Human Monocytes and Airway Macrophages During Healthy Aging and After Transplant publication-title: J Exp Med doi: 10.1084/jem.20191236 – volume: 349 year: 2003 ident: B27 article-title: Pulmonary Alveolar Proteinosis publication-title: N Engl J Med doi: 10.1056/NEJMra023226 – volume: 25 start-page: 3099 year: 2018 ident: B43 article-title: Organ-Specific Fate, Recruitment, and Refilling Dynamics of Tissue-Resident Macrophages During Blood-Stage Malaria publication-title: Cell Rep doi: 10.1016/j.celrep.2018.11.059 – volume: 15 year: 2009 ident: B57 article-title: PPAR-Delta Senses and Orchestrates Clearance of Apoptotic Cells to Promote Tolerance publication-title: Nat Med doi: 10.1038/nm.2048 – volume: 9 start-page: 38 year: 2016 ident: B103 article-title: Macrophages Are Critical to the Maintenance of IL-13-Dependent Lung Inflammation and Fibrosis publication-title: Mucosal Immunol doi: 10.1038/mi.2015.34 – volume: 201 year: 2020 ident: B48 article-title: Alveolar Macrophage Immunometabolism and Lung Function Impairment in Smoking and Chronic Obstructive Pulmonary Disease publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201908-1683LE – volume: 4 start-page: e126556 year: 2019 ident: B22 article-title: Single Cell RNA Sequencing Identifies Unique Inflammatory Airspace Macrophage Subsets publication-title: JCI Insight doi: 10.1172/jci.insight.126556 – volume: 38 start-page: e101233 year: 2019 ident: B37 article-title: Bhlhe40 and Bhlhe41 Transcription Factors Regulate Alveolar Macrophage Self-Renewal and Identity publication-title: EMBO J doi: 10.15252/embj.2018101233 – volume: 70 year: 2015 ident: B1 article-title: Pulmonary Macrophages: Key Players in the Innate Defence of the Airways publication-title: Thorax doi: 10.1136/thoraxjnl-2015-207020 – volume: 10 start-page: 3964 year: 2019 ident: B111 article-title: Non-Classical Tissue Monocytes and Two Functionally Distinct Populations of Interstitial Macrophages Populate the Mouse Lung publication-title: Nat Commun doi: 10.1038/s41467-019-11843-0 – volume: 30 start-page: 4096 year: 2020 ident: B10 article-title: SPHK2-Generated S1P in CD11b Macrophages Blocks STING to Suppress the Inflammatory Function of Alveolar Macrophages publication-title: Cell Rep doi: 10.1016/j.celrep.2020.02.112 – volume: 15 year: 2014 ident: B34 article-title: Induction of the Nuclear Receptor PPAR-γ by the Cytokine GM-CSF Is Critical for the Differentiation of Fetal Monocytes Into Alveolar Macrophages publication-title: Nat Immunol doi: 10.1038/ni.3005 – volume: 24 start-page: 439 year: 2018 ident: B70 article-title: Alveolar Macrophages Provide an Early Mycobacterium Tuberculosis Niche and Initiate Dissemination publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.08.001 – volume: 46 year: 2017 ident: B116 article-title: Exposure to Bacterial Cpg DNA Protects From Airway Allergic Inflammation by Expanding Regulatory Lung Interstitial Macrophages publication-title: Immunity doi: 10.1016/j.immuni.2017.02.016 – volume: 14 start-page: 81 year: 2014 ident: B4 article-title: Alveolar Macrophages: Plasticity in a Tissue-Specific Context publication-title: Nat Rev Immunol doi: 10.1038/nri3600 – volume: 184 year: 2021 ident: B99 article-title: COVID-19 and the Human Innate Immune System publication-title: Cell doi: 10.1016/j.cell.2021.02.029 – volume: 2 year: 2011 ident: B54 article-title: Acute Lung Injury: How Macrophages Orchestrate Resolution of Inflammation and Tissue Repair publication-title: Front Immunol doi: 10.3389/fimmu.2011.00065 – volume: 590 year: 2021 ident: B97 article-title: Circuits Between Infected Macrophages and T Cells in SARS-CoV-2 Pneumonia publication-title: Nature doi: 10.1038/s41586-020-03148-w – volume: 317 year: 2007 ident: B86 article-title: Monitoring of Blood Vessels and Tissues by a Population of Monocytes With Patrolling Behavior publication-title: Science doi: 10.1126/science.1142883 – volume: 26 year: 2020 ident: B93 article-title: Single-Cell Landscape of Bronchoalveolar Immune Cells in Patients With COVID-19 publication-title: Nat Med doi: 10.1038/s41591-020-0901-9 – volume: 15 year: 2001 ident: B35 article-title: GM-CSF Regulates Alveolar Macrophage Differentiation and Innate Immunity in the Lung Through PU.1 publication-title: Immunity doi: 10.1016/S1074-7613(01)00218-7 – volume: 21 year: 2020 ident: B42 article-title: Influenza-Induced Monocyte-Derived Alveolar Macrophages Confer Prolonged Antibacterial Protection publication-title: Nat Immunol doi: 10.1038/s41590-019-0568-x – volume: 14 start-page: e1007338 year: 2018 ident: B63 article-title: Klebsiella Pneumoniae Infection of Murine Neutrophils Impairs Their Efferocytic Clearance by Modulating Cell Death Machinery publication-title: PloS Pathog doi: 10.1371/journal.ppat.1007338 – volume: 287 start-page: 1 year: 2018 ident: B128 article-title: Macrophage-Targeted Drugamers With Enzyme-Cleavable Linkers Deliver High Intracellular Drug Dosing and Sustained Drug Pharmacokinetics Against Alveolar Pulmonary Infections publication-title: J Control Release doi: 10.1016/j.jconrel.2018.08.014 – volume: 141 start-page: 350 year: 2018 ident: B79 article-title: Mannose Receptor Modulates Macrophage Polarization and Allergic Inflammation Through MiR-511-3p publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2017.04.049 – volume: 18 year: 2017 ident: B104 article-title: A Gammaherpesvirus Provides Protection Against Allergic Asthma by Inducing the Replacement of Resident Alveolar Macrophages With Regulatory Monocytes publication-title: Nat Immunol doi: 10.1038/ni.3857 – volume: 42 year: 2015 ident: B31 article-title: C-Myb(+) Erythro-Myeloid Progenitor-Derived Fetal Monocytes Give Rise to Adult Tissue-Resident Macrophages publication-title: Immunity doi: 10.1016/j.immuni.2015.03.011 – volume: 111 year: 2014 ident: B14 article-title: Distinct Macrophage Lineages Contribute to Disparate Patterns of Cardiac Recovery and Remodeling in the Neonatal and Adult Heart publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1406508111 – volume: 41 year: 2011 ident: B101 article-title: Saturated-Efferocytosis Generates Pro-Resolving CD11b Low Macrophages: Modulation by Resolvins and Glucocorticoids publication-title: Eur J Immunol doi: 10.1002/eji.201040801 – volume: 58 start-page: 66 year: 2018 ident: B120 article-title: Deletion of C-FLIP From CD11b Macrophages Prevents Development of Bleomycin-Induced Lung Fibrosis publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2017-0154OC – volume: 123 year: 2013 ident: B68 article-title: Activation of Inflammasome Signaling Mediates Pathology of Acute P. Aeruginosa Pneumonia publication-title: J Clin Invest doi: 10.1172/JCI66142 – volume: 181 start-page: 1475 year: 2020 ident: B96 article-title: Host-Viral Infection Maps Reveal Signatures of Severe COVID-19 Patients publication-title: Cell doi: 10.1016/j.cell.2020.05.006 – volume: 186 year: 2012 ident: B100 article-title: Monocytes Control Second-Phase Neutrophil Emigration in Established Lipopolysaccharide-Induced Murine Lung Injury publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201112-2132OC – volume: 5 start-page: eaba7350 year: 2020 ident: B53 article-title: Functional Heterogeneity of Alveolar Macrophage Population Based on Expression of CXCL2 publication-title: Sci Immunol doi: 10.1126/sciimmunol.aba7350 – volume: 10 start-page: 3471 year: 2019 ident: B102 article-title: IFN-β Is a Macrophage-Derived Effector Cytokine Facilitating the Resolution of Bacterial Inflammation publication-title: Nat Commun doi: 10.1038/s41467-019-10903-9 – volume: 193 year: 2016 ident: B21 article-title: Flow Cytometric Analysis of Mononuclear Phagocytes in Nondiseased Human Lung and Lung-Draining Lymph Nodes publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201507-1376OC – volume: 51 start-page: 1800103 year: 2018 ident: B19 article-title: Location or Origin? What Is Critical for Macrophage Propagation of Lung Fibrosis publication-title: Eur Respir J doi: 10.1183/13993003.00103-2018 – volume: 199 year: 2017 ident: B47 article-title: Aging Impairs Alveolar Macrophage Phagocytosis and Increases Influenza-Induced Mortality in Mice publication-title: J Immunol (Baltimore Md.: 1950) doi: 10.4049/jimmunol.1700397 – volume: 126 year: 2015 ident: B24 article-title: Transcriptome Analysis Highlights the Conserved Difference Between Embryonic and Postnatal-Derived Alveolar Macrophages publication-title: Blood doi: 10.1182/blood-2015-01-624809 – volume: 501 year: 2020 ident: B125 article-title: Macrophage Polarization in Atherosclerosis publication-title: Clin Chim Acta doi: 10.1016/j.cca.2019.10.034 – volume: 20 year: 2020 ident: B130 article-title: Pathological Inflammation in Patients With COVID-19: A Key Role for Monocytes and Macrophages publication-title: Nat Rev Immunol doi: 10.1038/s41577-020-0331-4 – volume: 193 year: 2014 ident: B25 article-title: Resident Alveolar Macrophages Suppress, Whereas Recruited Monocytes Promote, Allergic Lung Inflammation in Murine Models of Asthma publication-title: J Immunol doi: 10.4049/jimmunol.1400580 – volume: 16 year: 2013 ident: B17 article-title: M2 Microglia and Macrophages Drive Oligodendrocyte Differentiation During CNS Remyelination publication-title: Nat Neurosci doi: 10.1038/nn.3469 – volume: 201 year: 2020 ident: B20 article-title: Localization of Macrophages in the Human Lung via Design-Based Stereology publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201911-2105OC – volume: 28 start-page: 683 year: 2020 ident: B12 article-title: Legionella-Infected Macrophages Engage the Alveolar Epithelium to Metabolically Reprogram Myeloid Cells and Promote Antibacterial Inflammation publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.07.019 – volume: 57 start-page: 66 year: 2017 ident: B109 article-title: Three Unique Interstitial Macrophages in the Murine Lung at Steady State publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2016-0361OC – volume: 21 year: 2020 ident: B115 article-title: The Angiocrine Rspondin3 Instructs Interstitial Macrophage Transition via Metabolic-Epigenetic Reprogramming and Resolves Inflammatory Injury publication-title: Nat Immunol doi: 10.1038/s41590-020-0764-8 – volume: 20 year: 2019 ident: B75 article-title: The Lung Environment Controls Alveolar Macrophage Metabolism and Responsiveness in Type 2 Inflammation publication-title: Nat Immunol doi: 10.1038/s41590-019-0352-y – volume: 11 year: 2020 ident: B107 article-title: Identification of Pro-Fibrotic Macrophage Populations by Single-Cell Transcriptomic Analysis in West Highland White Terriers Affected With Canine Idiopathic Pulmonary Fibrosis publication-title: Front Immunol doi: 10.3389/fimmu.2020.611749 – volume: 79 year: 2011 ident: B65 article-title: Participation of CD11c(+) Leukocytes in Methicillin-Resistant Staphylococcus Aureus Clearance From the Lung publication-title: Infect Immun doi: 10.1128/IAI.01299-10 – volume: 47 start-page: 913 year: 2017 ident: B29 article-title: Tissue-Resident Macrophages Are Locally Programmed for Silent Clearance of Apoptotic Cells publication-title: Immunity doi: 10.1016/j.immuni.2017.10.006 – volume: 65 year: 1997 ident: B66 article-title: Alveolar Macrophages Are Required for Protective Pulmonary Defenses in Murine Klebsiella Pneumonia: Elimination of Alveolar Macrophages Increases Neutrophil Recruitment But Decreases Bacterial Clearance and Survival publication-title: Infect Immun doi: 10.1128/iai.65.4.1139-1146.1997 – volume: 59 start-page: 45 year: 2018 ident: B83 article-title: IFN-β Improves Sepsis-Related Alveolar Macrophage Dysfunction and Postseptic Acute Respiratory Distress Syndrome-Related Mortality publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2017-0261OC – volume: 74 year: 2019 ident: B73 article-title: M2 Macrophages Correlated With Symptom Severity and Promote Type 2 Inflammation in Allergic Rhinitis publication-title: Allergy doi: 10.1111/all.13852 – volume: 57 start-page: 2003764 year: 2020 ident: B69 article-title: TNF-Mediated Alveolar Macrophage Necroptosis Drives Disease Pathogenesis During Respiratory Syncytial Virus Infection publication-title: Eur Respir J doi: 10.1183/13993003.03764-2020 – volume: 55 start-page: 1900646 year: 2020 ident: B7 article-title: A Spatially Restricted Fibrotic Niche in Pulmonary Fibrosis Is Sustained by M-CSF/M-CSFR Signalling in Monocyte-Derived Alveolar Macrophages publication-title: Eur Respir J doi: 10.1183/13993003.00646-2019 – volume: 54 start-page: 797 year: 2021 ident: B98 article-title: Longitudinal Profiling of Respiratory and Systemic Immune Responses Reveals Myeloid Cell-Driven Lung Inflammation in Severe COVID-19 publication-title: Immunity doi: 10.1016/j.immuni.2021.03.005 – volume: 21 year: 2020 ident: B49 article-title: Alveolar Macrophages Are Epigenetically Altered After Inflammation, Leading to Long-Term Lung Immunoparalysis publication-title: Nat Immunol doi: 10.1038/s41590-020-0673-x – volume: 11 year: 2020 ident: B129 article-title: Targeting GM-CSF in COVID-19 Pneumonia: Rationale and Strategies publication-title: Front Immunol doi: 10.3389/fimmu.2020.01625 – volume: 58 start-page: 66 year: 2018 ident: B108 article-title: Deletion of C-FLIP From CD11b(Hi) Macrophages Prevents Development of Bleomycin-Induced Lung Fibrosis publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2017-0154OC – volume: 210 year: 2013 ident: B28 article-title: Transcription Repressor Bach2 Is Required for Pulmonary Surfactant Homeostasis and Alveolar Macrophage Function publication-title: J Exp Med doi: 10.1084/jem.20130028 – volume: 147 year: 2021 ident: B59 article-title: Airway Macrophage-Intrinsic TGF-β1 Regulates Pulmonary Immunity During Early Life Allergen Exposure publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2021.01.026 – volume: 130 year: 2020 ident: B80 article-title: Respiratory Syncytial Virus Infection Exacerbates Pneumococcal Pneumonia via Gas6/Axl-Mediated Macrophage Polarization publication-title: J Clin Invest doi: 10.1172/JCI125505 – volume: 506 year: 2014 ident: B13 article-title: Sessile Alveolar Macrophages Communicate With Alveolar Epithelium to Modulate Immunity publication-title: Nature doi: 10.1038/nature12902 – volume: 52 start-page: 1702590 year: 2018 ident: B62 article-title: Impaired Efferocytosis and Neutrophil Extracellular Trap Clearance by Macrophages in ARDS publication-title: . Eur Respir J doi: 10.1183/13993003.02590-2017 – volume: 41 year: 2020 ident: B6 article-title: Teaching Old Dogs New Tricks? The Plasticity of Lung Alveolar Macrophage Subsets publication-title: Trends Immunol doi: 10.1016/j.it.2020.08.008 – volume: 143 year: 2016 ident: B112 article-title: Developmental Origin of Lung Macrophage Diversity publication-title: Development doi: 10.1242/dev.129122 – volume: 54 start-page: 259 year: 2020 ident: B44 article-title: Distinct Developmental Pathways From Blood Monocytes Generate Human Lung Macrophage Diversity publication-title: Immunity doi: 10.1016/j.immuni.2020.12.003 |
SSID | ssj0000493335 |
Score | 2.603873 |
SecondaryResourceType | review_article |
Snippet | Lung macrophages play important roles in the maintenance of homeostasis, pathogen clearance and immune regulation. The different types of pulmonary macrophages... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 753940 |
SubjectTerms | COVID-19 fibrosis Immunology infection inflammation macrophage |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyInzi_iOBJqOtH2ixHdY4hzpOD3UI-WUVbsdvB_96XZBvrRS9e25Smv5fk_V5f8nsIXVMRS-ChNKIQLUQEfEYkjFsMC5JIprRg0p0dHr8Uowl5mubTjVJfbk9YkAcOwPWE1MqmvvIcjK9Y9m0idaGZNEZk1HqdT_B5G8HUW-C9WZblIY0JURjr2fLjYwHxYJrcAkNn7mfHhiPyev0tktneIrnhc4Z7aHdJFvFd6OQ-2jLVAdoO5SO_DxEbrDZV4NrisXDVuGawPjS4rPAzzGLsiqDXwP-assGi0ngQ0jHNEZoMH18fRtGyFEKkgEHNo1xqqxksRRCPxRmAUJg-U4QZnWpqCwk0TUpNwOHRQhZMFSkRVAnlZGfzfkqyY9Sp6sqcIKxSMEHCJKEmIZQwpyhvgPlIaGYssV0Ur3DhaqkT7spVvHOIFxyU3EPJHZQ8QNlFN-tHPoNIxm-N7x3Y64ZO39pfAKvzpdX5X1bvoquVqTjMB5fkEJWpFw2Hz4WIFWgctKEtG7be2L5TlTOvrN3P_Vnl0__o4hnacV8d-QzWOerMvxbmAgjMXF76sfoD5Tvw4A priority: 102 providerName: Directory of Open Access Journals |
Title | Diversity of Macrophages in Lung Homeostasis and Diseases |
URI | https://www.proquest.com/docview/2580946003 https://pubmed.ncbi.nlm.nih.gov/PMC8500393 https://doaj.org/article/abdcf2005930420b8f1bd6d9beea37f3 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yEXwRP3F-EcEnoXNts2R5EPF7iPPJwd5CPt1EW1030P_eS9qJBRF8KbS9tuQuyf2ul9wPoSMm2wpwKIsYRAsRAZ8RSesnQ0pixbWRXPm9w_0H2huQu2FnuIDm9FaVAotfQzvPJzWYvLQ-3j_PYMCf-ogT_O2JG7--ziDUS-IWgG9OIIJfBMfEPKFBv0L7zyUYTtNAuRlTSiLoyqTMc_7-lpqnCgX9ayi0vobyh1O6WUUrFZrE56X519CCzdbRUskv-bmB-NV81QXOHe5LT9c1ggmkwOMM38Mwx54lPQeAWIwLLDODr8p8TbGJBjfXj5e9qOJKiDRArGnUUcYZDnMVBGztVHUdtV2uCbcmMcxRBThOKUPAIzKqKNc0IZJpqX1d2k43IekWamR5ZrcR1gnYKOaKMBsTRrgvOW8BGikQs464JmrP9SJ0VUjc81m8CAgovCpFUKXwqhSlKpvo-PuRt7KKxl_CF17Z34K-AHa4kE-eRDWehFRGuyQQEsK004YGx8pQw5W1MmUubaLDuakEDBifBZGZzWeFgOZCSAs4D2RYzYa1L9bvZONRKL3d7YTNzDv_ac8uWvZnUUhl7aHGdDKz-4Bkpuog_AGA4-0wPgh99Qs_IfM6 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diversity+of+Macrophages+in+Lung+Homeostasis+and+Diseases&rft.jtitle=Frontiers+in+immunology&rft.au=Hou%2C+Fei&rft.au=Xiao%2C+Kun&rft.au=Tang%2C+Li&rft.au=Xie%2C+Lixin&rft.date=2021-09-24&rft.issn=1664-3224&rft.eissn=1664-3224&rft.volume=12&rft_id=info:doi/10.3389%2Ffimmu.2021.753940&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fimmu_2021_753940 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |