The Evolution and Transmission of Epidemic GII.17 Noroviruses

Background. In recent decades, the GII.4 norovirus genotype has predominated in epidemics worldwide and been associated with an increased rate of evolutionary change. In 2014, a novel GII.17 variant emerged and persisted, causing large outbreaks of gastroenteritis in China and sporadic infections gl...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of infectious diseases Vol. 214; no. 4; pp. 556 - 564
Main Authors Lu, Jing, Fang, Lin, Zheng, Huanying, Lao, Jiaqian, Yang, Fen, Sun, Limei, Xiao, Jianpeng, Lin, Jinyan, Song, Tie, Ni, Tao, Raghwani, Jayna, Ke, Changwen, Faria, Nuno R., Bowden, Thomas A., Pybus, Oliver G., Li, Hui
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 15.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background. In recent decades, the GII.4 norovirus genotype has predominated in epidemics worldwide and been associated with an increased rate of evolutionary change. In 2014, a novel GII.17 variant emerged and persisted, causing large outbreaks of gastroenteritis in China and sporadic infections globally. The origin, evolution, and transmission history of this new variant are largely unknown. Methods. We generated 103 full capsid and 8 whole-genome sequences of GII.17 strains collected between August 2013 and November 2015 in Guangdong, China. Phylogenetic analyses were performed by integrating our data with those for all publically available GII.17 sequences. Results. The novel emergent lineage GII.17_Kawasaki_2014 most likely originated from Africa around 2001 and evolved at a rate of 5.6 × 10⁻³ substitutions/site/year. Within this lineage, a new variant containing several important amino acid changes emerged around August 2013 and caused extensive epidemics in 2014-2015. The phylodynamic and epidemic history of the GII.17_Kawasaki lineage shows similarities with the pattern observed for GII.4 norovirus evolution. Virus movements from Hong Kong to neighboring coastal cities were frequently observed. Conclusions. Our results provide new insights into GII.17 norovirus evolution and transmission and highlight the potential for a rare norovirus genotype to rapidly replace existing strains and cause local epidemics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
O. G. P. and H. L. contributed equally to the study and are joint senior authors.
ISSN:0022-1899
1537-6613
DOI:10.1093/infdis/jiw208