Molecular Mechanisms of Chondrocyte Proliferation and Differentiation
Cartilage is a kind of connective tissue that buffers pressure and is essential to protect joint movement. It is difficult to self-recover once cartilage is damaged due to the lack of blood vessels, lymph, and nerve tissues. Repair of cartilage injury is mainly achieved by stimulating chondrocyte pr...
Saved in:
Published in | Frontiers in cell and developmental biology Vol. 9; p. 664168 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
28.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-634X 2296-634X |
DOI | 10.3389/fcell.2021.664168 |
Cover
Loading…
Abstract | Cartilage is a kind of connective tissue that buffers pressure and is essential to protect joint movement. It is difficult to self-recover once cartilage is damaged due to the lack of blood vessels, lymph, and nerve tissues. Repair of cartilage injury is mainly achieved by stimulating chondrocyte proliferation and extracellular matrix (ECM) synthesis. Cartilage homeostasis involves the regulation of multiple growth factors and the transduction of cellular signals. It is a very complicated process that has not been elucidated in detail. In this review, we summarized a variety of signaling molecules related to chondrocytes function. Especially, we described the correlation between chondrocyte-specific regulatory factors and cell signaling molecules. It has potential significance for guiding the treatment of cartilage injury. |
---|---|
AbstractList | Cartilage is a kind of connective tissue that buffers pressure and is essential to protect joint movement. It is difficult to self-recover once cartilage is damaged due to the lack of blood vessels, lymph, and nerve tissues. Repair of cartilage injury is mainly achieved by stimulating chondrocyte proliferation and extracellular matrix (ECM) synthesis. Cartilage homeostasis involves the regulation of multiple growth factors and the transduction of cellular signals. It is a very complicated process that has not been elucidated in detail. In this review, we summarized a variety of signaling molecules related to chondrocytes function. Especially, we described the correlation between chondrocyte-specific regulatory factors and cell signaling molecules. It has potential significance for guiding the treatment of cartilage injury. Cartilage is a kind of connective tissue that buffers pressure and is essential to protect joint movement. It is difficult to self-recover once cartilage is damaged due to the lack of blood vessels, lymph, and nerve tissues. Repair of cartilage injury is mainly achieved by stimulating chondrocyte proliferation and extracellular matrix (ECM) synthesis. Cartilage homeostasis involves the regulation of multiple growth factors and the transduction of cellular signals. It is a very complicated process that has not been elucidated in detail. In this review, we summarized a variety of signaling molecules related to chondrocytes function. Especially, we described the correlation between chondrocyte-specific regulatory factors and cell signaling molecules. It has potential significance for guiding the treatment of cartilage injury.Cartilage is a kind of connective tissue that buffers pressure and is essential to protect joint movement. It is difficult to self-recover once cartilage is damaged due to the lack of blood vessels, lymph, and nerve tissues. Repair of cartilage injury is mainly achieved by stimulating chondrocyte proliferation and extracellular matrix (ECM) synthesis. Cartilage homeostasis involves the regulation of multiple growth factors and the transduction of cellular signals. It is a very complicated process that has not been elucidated in detail. In this review, we summarized a variety of signaling molecules related to chondrocytes function. Especially, we described the correlation between chondrocyte-specific regulatory factors and cell signaling molecules. It has potential significance for guiding the treatment of cartilage injury. |
Author | Hu, Shi Chen, Hui Liu, Ren-Qin Tan, Xiao-Ning Wu, Ping Peng, Li-Hong Li, Yong-Min |
AuthorAffiliation | 3 Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University , Xiangtan , China 2 The Affiliated Hospital of Hunan Academy of Chinese Medicine , Changsha , China 1 Hunan University of Chinese Medicine & Hunan Academy of Chinese Medicine , Changsha , China 5 School of Computer, Hunan University of Technology , Zhuzhou , China 4 Center for Bionic Sensing and Intelligence, Institute of Bio-medical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , China |
AuthorAffiliation_xml | – name: 1 Hunan University of Chinese Medicine & Hunan Academy of Chinese Medicine , Changsha , China – name: 2 The Affiliated Hospital of Hunan Academy of Chinese Medicine , Changsha , China – name: 4 Center for Bionic Sensing and Intelligence, Institute of Bio-medical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , China – name: 3 Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University , Xiangtan , China – name: 5 School of Computer, Hunan University of Technology , Zhuzhou , China |
Author_xml | – sequence: 1 givenname: Hui surname: Chen fullname: Chen, Hui – sequence: 2 givenname: Xiao-Ning surname: Tan fullname: Tan, Xiao-Ning – sequence: 3 givenname: Shi surname: Hu fullname: Hu, Shi – sequence: 4 givenname: Ren-Qin surname: Liu fullname: Liu, Ren-Qin – sequence: 5 givenname: Li-Hong surname: Peng fullname: Peng, Li-Hong – sequence: 6 givenname: Yong-Min surname: Li fullname: Li, Yong-Min – sequence: 7 givenname: Ping surname: Wu fullname: Wu, Ping |
BookMark | eNp9kT1vFDEQhi0URELID6DbkuYOf6_dIKEjQKREUIBEZ_ljnHPks4O9h5R_z95ehAgFle2ZeZ-Z8fsSnZRaAKHXBK8ZU_pt9JDzmmJK1lJyItUzdEaplivJ-I-Tv-6n6KL3O4wxoWIUir1Ap4wTyjEXZ-jypmbw-2zbcAN-a0vquz7UOGy2tYRW_cMEw9dWc4rQ7JRqGWwJw4cU5zeUKS2xV-h5tLnDxeN5jr5_vPy2-by6_vLpavP-euUFVtOKjcAcdsFK6WwQIVJFI5MjpxoTpwmRWHJBJYtaUBdBuDEE8FgRRbQLjJ2jqyM3VHtn7lva2fZgqk1mCdR2a2ybks9gMCcwK6zSDHMvQXnqpI3EcRy0o2FmvTuy7vduB8HPyzSbn0CfZkramtv6y8yzcKzxDHjzCGj15x76ZHapH0yxBeq-Gyo4Hqkcl1JyLPWt9t4g_mlDsDm4aRY3zcFNc3Rz1oz_aHyalt-ep0n5P8rf5XqnWA |
CitedBy_id | crossref_primary_10_1111_boc_202300042 crossref_primary_10_1186_s12964_024_01533_w crossref_primary_10_3389_fbioe_2023_1127949 crossref_primary_10_1038_s41420_022_01105_2 crossref_primary_10_1039_D4AN00315B crossref_primary_10_4103_mjdrdypu_mjdrdypu_381_24 crossref_primary_10_1089_scd_2024_0033 crossref_primary_10_23838_pfm_2023_00100 crossref_primary_10_1002_dvg_23509 crossref_primary_10_3390_pharmaceutics16081095 crossref_primary_10_6065_apem_2244120_060 crossref_primary_10_1038_s41598_023_41874_z crossref_primary_10_62347_AFVA1238 crossref_primary_10_1016_j_isci_2022_105370 crossref_primary_10_1002_jbm4_10617 crossref_primary_10_3390_ijms242216148 crossref_primary_10_3390_biology12040558 crossref_primary_10_3390_ijms242115883 crossref_primary_10_1007_s00018_024_05331_y crossref_primary_10_1080_14786419_2024_2429111 crossref_primary_10_3389_fphar_2022_952950 crossref_primary_10_3390_ijms26031007 crossref_primary_10_1021_acs_biomac_3c01444 crossref_primary_10_7554_eLife_91883 crossref_primary_10_1002_mco2_657 crossref_primary_10_3389_fcell_2023_1184550 crossref_primary_10_1161_CIRCRESAHA_123_323365 crossref_primary_10_3390_ijms24021512 crossref_primary_10_3390_ani13081301 crossref_primary_10_3390_bioengineering10060741 crossref_primary_10_3390_cells12182301 crossref_primary_10_1021_acsbiomaterials_4c01107 crossref_primary_10_1038_s41392_024_01931_z crossref_primary_10_1073_pnas_2220159120 crossref_primary_10_3389_fcell_2022_979096 crossref_primary_10_3390_life12070939 crossref_primary_10_3892_ijmm_2022_5103 crossref_primary_10_1177_20417314241279935 crossref_primary_10_3390_cimb46050251 crossref_primary_10_3389_fbioe_2022_934179 crossref_primary_10_3389_fphar_2024_1423062 crossref_primary_10_3390_genes14030534 crossref_primary_10_3389_fimmu_2022_802440 crossref_primary_10_1007_s13770_024_00662_0 crossref_primary_10_1038_s41598_024_62516_y crossref_primary_10_7554_eLife_91883_3 crossref_primary_10_31393_morphology_journal_2023_29_4__03 crossref_primary_10_1038_s41598_024_82177_1 crossref_primary_10_3389_fcell_2023_1181619 crossref_primary_10_1007_s10616_024_00637_y crossref_primary_10_3389_fvets_2024_1517349 crossref_primary_10_1088_1758_5090_acc68f crossref_primary_10_1007_s13105_024_01008_z crossref_primary_10_1089_ten_tec_2022_0016 crossref_primary_10_1172_jci_insight_171984 crossref_primary_10_1186_s13018_024_05055_6 crossref_primary_10_3390_ijms242015401 crossref_primary_10_1007_s13770_024_00698_2 crossref_primary_10_1111_jnc_16013 crossref_primary_10_3389_fendo_2025_1469400 crossref_primary_10_1007_s12015_023_10665_4 crossref_primary_10_1080_17435889_2024_2439242 crossref_primary_10_1016_j_gendis_2024_101241 crossref_primary_10_1088_1758_5090_adbd79 crossref_primary_10_1155_2022_1157498 crossref_primary_10_3390_genes14040838 crossref_primary_10_1186_s12872_023_03600_5 crossref_primary_10_1007_s00018_025_05622_y |
Cites_doi | 10.1093/hmg/ddu594 10.1073/pnas.1207458110 10.1021/bi1005199 10.1002/jcb.27391 10.1369/0022155418811645 10.3389/fgene.2019.01103 10.3390/ijms21072425 10.1101/gad.13.11.1361 10.3109/10799893.2013.856920 10.3109/10520295.2013.811285 10.1359/JBMR.0301239 10.1002/jbmr.2287 10.1016/j.biopha.2019.109388 10.1016/s1534-5807(02)00261-7 10.1177/1941738115611350 10.1126/science.273.5275.613 10.1073/pnas.97.3.1113 10.1007/s00018-019-03099-0 10.1038/boneres.2016.9 10.1074/jbc.M112.409342 10.1016/j.semcdb.2016.10.004 10.3390/cells8090969 10.3390/pharmaceutics12010073 10.1371/journal.pone.0089025 10.1002/jcp.29528 10.1006/dbio.1997.8536 10.1101/cshperspect.a021873 10.1016/j.yexcr.2009.03.008 10.1074/jbc.M808048200 10.1016/j.ecoenv.2020.111194 10.1016/j.cell.2012.05.012 10.1002/dvdy.22048 10.1016/j.joca.2009.06.008 10.1046/j.1469-7580.2002.00078.x 10.1093/ejo/cjs089 10.1016/j.joca.2004.08.008 10.1242/dev.02471 10.1073/pnas.0902306106 10.1016/j.bbrc.2004.11.067 10.1101/gad.1017802 10.4155/fsoa-2016-0034 10.1002/jbmr.1770 10.1038/nrrheum.2014.200 10.1111/cpr.12637 10.1242/dev.029926 10.1196/annals.1402.053 10.1038/s41418-017-0050-y 10.1002/art.24250 10.1196/annals.1346.002 10.1371/journal.pone.0000450 10.1016/j.ydbio.2016.11.016 10.1038/ijos.2015.14 10.1002/(sici)1097-0177(199708)209:4<377::aid-aja5>3.0.co;2-f 10.1007/s00018-019-03191-5 10.1111/j.1582-4934.2009.00678.x 10.1016/j.devcel.2005.03.016 10.1038/srep25594 10.11594/jtls.08.01.05 10.1186/ar2896 10.1016/j.bcp.2019.02.036 10.1136/annrheumdis-2019-216648 10.1002/jcp.26832 10.1002/jbmr.1945 10.3390/biom10020332 10.1016/j.joca.2016.10.007 10.1046/j.1440-169x.1999.00402.x 10.1074/jbc.M601804200 10.1038/nature16063 10.1002/art.22041 10.1016/j.gendis.2019.03.008 10.1016/j.csm.2017.02.001 10.1016/j.devcel.2020.05.001 10.1002/jcb.24418 10.1242/dev.131722 10.1111/joa.12554 10.1083/jcb.201011051 10.1101/gad.1174704 10.1002/jcp.24045 10.1007/978-981-10-3233-2_6 10.2147/IJN.S249829 10.1677/joe.0.174r001 10.1101/cshperspect.a022202 10.1073/pnas.0913897107 10.1101/gad.1171104 10.1038/cdd.2011.114 10.1186/ar3805 10.1016/j.joca.2014.11.013 10.1073/pnas.0503617102 10.1007/s00441-016-2403-0 10.1002/jcp.20656 10.3390/ijms21072358 10.1038/s41598-019-52125-5 10.1242/dev.105536 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Chen, Tan, Hu, Liu, Peng, Li and Wu. Copyright © 2021 Chen, Tan, Hu, Liu, Peng, Li and Wu. 2021 Chen, Tan, Hu, Liu, Peng, Li and Wu |
Copyright_xml | – notice: Copyright © 2021 Chen, Tan, Hu, Liu, Peng, Li and Wu. – notice: Copyright © 2021 Chen, Tan, Hu, Liu, Peng, Li and Wu. 2021 Chen, Tan, Hu, Liu, Peng, Li and Wu |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fcell.2021.664168 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2296-634X |
ExternalDocumentID | oai_doaj_org_article_041ed33a89304c6e8c2b6af1b40d9b2d PMC8194090 10_3389_fcell_2021_664168 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RPM 7X8 5PM |
ID | FETCH-LOGICAL-c508t-37e3b0bda66bad5df282f36742901b91160645263f952bfe5b7ddec081819bd33 |
IEDL.DBID | M48 |
ISSN | 2296-634X |
IngestDate | Wed Aug 27 01:27:54 EDT 2025 Thu Aug 21 18:12:38 EDT 2025 Fri Jul 11 03:17:24 EDT 2025 Tue Jul 01 03:20:23 EDT 2025 Thu Apr 24 23:09:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-37e3b0bda66bad5df282f36742901b91160645263f952bfe5b7ddec081819bd33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Tomokazu Tomo Fukuda, Iwate University, Japan This article was submitted to Cell Growth and Division, a section of the journal Frontiers in Cell and Developmental Biology These authors have contributed equally to this work Reviewed by: Hiroshi Tomita, Iwate University, Japan; Kyoung-ha So, Seoul National University, South Korea |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fcell.2021.664168 |
PMID | 34124045 |
PQID | 2540726790 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_041ed33a89304c6e8c2b6af1b40d9b2d pubmedcentral_primary_oai_pubmedcentral_nih_gov_8194090 proquest_miscellaneous_2540726790 crossref_primary_10_3389_fcell_2021_664168 crossref_citationtrail_10_3389_fcell_2021_664168 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-28 |
PublicationDateYYYYMMDD | 2021-05-28 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in cell and developmental biology |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Otsuki (B51) 2010; 107 Sasai (B60) 2019; 10 Kobayashi (B34) 2005; 102 Spater (B66) 2006; 133 Wang (B75) 2004; 12 Morikawa (B46) 2016; 8 Sahni (B59) 2017; 13 Blaise (B4) 2009; 60 Carballo (B5) 2017; 36 Correa (B15) 2015; 23 Hojo (B25) 2013; 288 Rudnicki (B57) 1997; 185 Akiyama (B2) 2004; 18 Zhou (B91) 2015; 24 Wu (B76) 2016; 4 Bertrand (B3) 2020; 79 van der Kraan (B72) 2009; 17 Yamashita (B81) 2009; 315 Soetjahjo (B65) 2018; 8 Kraan (B37) 2010; 12 Ling (B40) 2017; 421 Zhao (B88) 1997; 209 Zwaka (B93) 2007; 2 Orfanidou (B50) 2009; 13 Nalesso (B48) 2011; 193 Topol (B71) 2009; 284 Wu (B77) 2007; 1116 Kawakami (B32) 1999; 41 Takarada (B69) 2013; 28 Haller (B24) 2012; 19 Ma (B42) 2020; 235 Stegen (B67) 2020; 53 Liu (B41) 2017; 62 Richter (B55) 2016; 8 Chavez (B7) 2017; 25 Charlier (B6) 2019; 165 Papathanasiou (B52) 2012; 14 Cinque (B13) 2015; 528 Hosaka (B26) 2013; 110 Xiao (B79) 2018; 119 Zhao (B87) 2002; 201 Kindblom (B33) 2002; 174 Shang (B63) 2016; 6 Murakami (B47) 2000; 97 Xie (B80) 2018; 25 Zhang (B86) 2019; 6 Clevers (B14) 2012; 149 Sassi (B62); 89 Jiang (B29) 2014; 11 Chijimatsu (B11) 2019; 76 Yan (B82) 2020; 12 Zieba (B92) 2020; 10 Nowak-Solinska (B49) 2013; 35 Sassi (B61); 34 Vortkamp (B73) 1996; 273 Xiao (B78) 2019; 9 Rim (B56) 2020; 21 Chen (B9) 2020; 15 Parreno (B53) 2017; 230 Liao (B39) 2014; 9 Ma (B43) 2019; 52 Ellman (B20) 2013; 114 Ding (B18) 2012; 227 Mead (B44) 2009; 106 Akiyama (B1) 2002; 16 Yao (B84) 2020; 206 Kamekura (B30) 2006; 54 Grafe (B23) 2018; 10 Ryu (B58) 2006; 281 Dong (B19) 2006; 208 Gamer (B22) 2009; 238 Jiang (B28) 2020; 21 Day (B16) 2005; 8 Fischer (B21) 2018; 233 Sun (B68) 2020; 122 Kronenberg (B38) 2006; 1068 Thielen (B70) 2019; 8 Chen (B8) 2014; 29 Chen (B10) 2013; 28 Komori (B35) 2017; 962 Janssen (B27) 2019; 67 Wan (B74) 2005; 328 Kozhemyakina (B36) 2015; 142 Shu (B64) 2016; 2 Diederichs (B17) 2019; 76 Karuppaiah (B31) 2016; 143 Chuang (B12) 2010; 49 Retting (B54) 2009; 136 Zhou (B89) 2016; 366 Yoshida (B85) 2004; 18 Minina (B45) 2002; 3 Zhou (B90) 2004; 19 Yang (B83) 2015; 7 |
References_xml | – volume: 24 start-page: 1764 year: 2015 ident: B91 article-title: Mutant activated FGFR3 impairs endochondral bone growth by preventing SOX9 downregulation in differentiating chondrocytes. publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddu594 – volume: 110 start-page: 1875 year: 2013 ident: B26 article-title: Notch signaling in chondrocytes modulates endochondral ossification and osteoarthritis development. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1207458110 – volume: 49 start-page: 5524 year: 2010 ident: B12 article-title: Heparan sulfate-dependent signaling of fibroblast growth factor 18 by chondrocyte-derived perlecan. publication-title: Biochemistry doi: 10.1021/bi1005199 – volume: 119 start-page: 10415 year: 2018 ident: B79 article-title: TGF-beta/SMAD signaling inhibits intermittent cyclic mechanical tension-induced degeneration of endplate chondrocytes by regulating the miR-455-5p/RUNX2 axis. publication-title: J. Cell. Biochem. doi: 10.1002/jcb.27391 – volume: 67 start-page: 117 year: 2019 ident: B27 article-title: The influence of TGF-beta3, EGF, and BGN on SOX9 and RUNX2 expression in human chondrogenic progenitor cells. publication-title: J. Histochem. Cytochem. doi: 10.1369/0022155418811645 – volume: 10 year: 2019 ident: B60 article-title: Hedgehog signal and genetic disorders. publication-title: Front. Genet. doi: 10.3389/fgene.2019.01103 – volume: 21 year: 2020 ident: B28 article-title: Antxr1, which is a target of Runx2, regulates chondrocyte proliferation and apoptosis. publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21072425 – volume: 13 start-page: 1361 year: 2017 ident: B59 article-title: FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. publication-title: Genes Dev. doi: 10.1101/gad.13.11.1361 – volume: 34 start-page: 48 ident: B61 article-title: Notch signaling is involved in human articular chondrocytes de-differentiation during osteoarthritis. publication-title: J. Recept. Signal. Transduct. Res. doi: 10.3109/10799893.2013.856920 – volume: 89 start-page: 29 ident: B62 article-title: Wnt signaling is involved in human articular chondrocyte de-differentiation in vitro. publication-title: Biotech. Histochem. doi: 10.3109/10520295.2013.811285 – volume: 19 start-page: 463 year: 2004 ident: B90 article-title: Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. publication-title: J. Bone Miner. Res. doi: 10.1359/JBMR.0301239 – volume: 29 start-page: 2653 year: 2014 ident: B8 article-title: Runx2 regulates endochondral ossification through control of chondrocyte proliferation and differentiation. publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.2287 – volume: 122 year: 2020 ident: B68 article-title: Salidroside enhances proliferation and maintains phenotype of articular chondrocytes for autologous chondrocyte implantation (ACI) via TGF-beta/Smad3 Signal. publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2019.109388 – volume: 3 start-page: 439 year: 2002 ident: B45 article-title: Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. publication-title: Dev. Cell doi: 10.1016/s1534-5807(02)00261-7 – volume: 8 start-page: 153 year: 2016 ident: B55 article-title: Knee articular cartilage repair and restoration techniques: a review of the literature. publication-title: Sports Health doi: 10.1177/1941738115611350 – volume: 273 start-page: 613 year: 1996 ident: B73 article-title: Regulation of rate of cartilage differentiation by Indian Hedgehog and elat elated protein. publication-title: Science doi: 10.1126/science.273.5275.613 – volume: 97 start-page: 1113 year: 2000 ident: B47 article-title: Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.97.3.1113 – volume: 76 start-page: 3875 year: 2019 ident: B17 article-title: Regulation of WNT5A and WNT11 during MSC in vitro chondrogenesis: WNT inhibition lowers BMP and hedgehog activity, and reduces hypertrophy. publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-019-03099-0 – volume: 4 year: 2016 ident: B76 article-title: TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. publication-title: Bone Res. doi: 10.1038/boneres.2016.9 – volume: 288 start-page: 9924 year: 2013 ident: B25 article-title: Hedgehog-Gli activators direct osteo-chondrogenic function of bone morphogenetic protein toward osteogenesis in the perichondrium. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.409342 – volume: 62 start-page: 34 year: 2017 ident: B41 article-title: Transcriptional control of chondrocyte specification and differentiation. publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2016.10.004 – volume: 8 year: 2019 ident: B70 article-title: TGFbeta/BMP signaling pathway in cartilage homeostasis. publication-title: Cells doi: 10.3390/cells8090969 – volume: 12 year: 2020 ident: B82 article-title: Induction of WNT16 via Peptide-mRNA nanoparticle-based delivery maintains cartilage homeostasis. publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12010073 – volume: 9 year: 2014 ident: B39 article-title: Sox9 potentiates BMP2-induced chondrogenic differentiation and inhibits BMP2-induced osteogenic differentiation. publication-title: PLoS One doi: 10.1371/journal.pone.0089025 – volume: 235 start-page: 6023 year: 2020 ident: B42 article-title: Novel insights into Dhh signaling in antler chondrocyte proliferation and differentiation: involvement of Foxa. publication-title: J. Cell. Physiol. doi: 10.1002/jcp.29528 – volume: 185 start-page: 104 year: 1997 ident: B57 article-title: Inhibition of chondrogenesis by wnt gene expression in vivo and in vitro. publication-title: Dev. Biol. doi: 10.1006/dbio.1997.8536 – volume: 8 year: 2016 ident: B46 article-title: TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a021873 – volume: 315 start-page: 2231 year: 2009 ident: B81 article-title: Sox9 directly promotes Bapx1 gene expression to repress Runx2 in chondrocytes. publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2009.03.008 – volume: 284 start-page: 3323 year: 2009 ident: B71 article-title: Sox9 inhibits Wnt signaling by promoting beta-catenin phosphorylation in the nucleus. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M808048200 – volume: 206 year: 2020 ident: B84 article-title: Effect of total flavonoids of Rhizoma Drynariae in thiram induced cytotoxicity of chondrocyte via BMP-2/Runx2 and IHH/PTHrP expressions. publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.111194 – volume: 149 start-page: 1192 year: 2012 ident: B14 article-title: Wnt/beta-catenin signaling and disease. publication-title: Cell doi: 10.1016/j.cell.2012.05.012 – volume: 238 start-page: 2374 year: 2009 ident: B22 article-title: Overexpression of BMP3 in the developing skeleton alters endochondral bone formation resulting in spontaneous rib fractures. publication-title: Dev. Dyn. doi: 10.1002/dvdy.22048 – volume: 17 start-page: 1539 year: 2009 ident: B72 article-title: TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis: modulation and integration of signaling pathways through receptor-Smads. publication-title: Osteoarthritis Cartilage doi: 10.1016/j.joca.2009.06.008 – volume: 201 start-page: 137 year: 2002 ident: B87 article-title: Expression of parathyroid hormone-related peptide (PTHrP) and its receptor (PTH1R) during the histogenesis of cartilage and bone in the chicken mandibular process. publication-title: J. Anat. doi: 10.1046/j.1469-7580.2002.00078.x – volume: 35 start-page: 826 year: 2013 ident: B49 article-title: The effect of naringin on early growth and development of the spheno-occipital synchondrosis as measured by the expression of PTHrP and Sox9–an in vitro model. publication-title: Eur. J. Orthod. doi: 10.1093/ejo/cjs089 – volume: 12 start-page: 963 year: 2004 ident: B75 article-title: Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage. publication-title: Osteoarthritis Cartilage doi: 10.1016/j.joca.2004.08.008 – volume: 133 start-page: 3039 year: 2006 ident: B66 article-title: Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. publication-title: Development doi: 10.1242/dev.02471 – volume: 106 start-page: 14420 year: 2009 ident: B44 article-title: Notch pathway regulation of chondrocyte differentiation and proliferation during appendicular and axial skeleton development. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0902306106 – volume: 328 start-page: 651 year: 2005 ident: B74 article-title: BMP signaling in skeletal development. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2004.11.067 – volume: 16 start-page: 2813 year: 2002 ident: B1 article-title: The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. publication-title: Genes Dev. doi: 10.1101/gad.1017802 – volume: 2 year: 2016 ident: B64 article-title: Use of FGF-2 and FGF-18 to direct bone marrow stromal stem cells to chondrogenic and osteogenic lineages. publication-title: Future Sci. OA doi: 10.4155/fsoa-2016-0034 – volume: 28 start-page: 649 year: 2013 ident: B10 article-title: Notch gain of function inhibits chondrocyte differentiation via Rbpj-dependent suppression of Sox9. publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.1770 – volume: 11 start-page: 206 year: 2014 ident: B29 article-title: Origin and function of cartilage stem/progenitor cells in osteoarthritis. publication-title: Nat. Rev. Rheumatol. doi: 10.1038/nrrheum.2014.200 – volume: 52 year: 2019 ident: B43 article-title: Function and regulation of transforming growth factor beta1 signalling in antler chondrocyte proliferation and differentiation. publication-title: Cell Prolif. doi: 10.1111/cpr.12637 – volume: 136 start-page: 1093 year: 2009 ident: B54 article-title: BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. publication-title: Development doi: 10.1242/dev.029926 – volume: 1116 start-page: 29 year: 2007 ident: B77 article-title: Multiplicity of BMP signaling in skeletal development. publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1402.053 – volume: 25 start-page: 1442 year: 2018 ident: B80 article-title: Non-canonical Wnt induces chondrocyte de-differentiation through Frizzled 6 and DVL-2/B-raf/CaMKIIα/syndecan 4 axis. publication-title: Cell Death Differ. doi: 10.1038/s41418-017-0050-y – volume: 60 start-page: 428 year: 2009 ident: B4 article-title: Involvement of the Notch pathway in the regulation of matrix metalloproteinase 13 and the dedifferentiation of articular chondrocytes in murine cartilage. publication-title: Arthritis Rheum. doi: 10.1002/art.24250 – volume: 1068 start-page: 1 year: 2006 ident: B38 article-title: PTHrP and skeletal development. publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1346.002 – volume: 2 year: 2007 ident: B93 article-title: Conditional expression of Wnt4 during chondrogenesis leads to dwarfism in mice. publication-title: PLoS One doi: 10.1371/journal.pone.0000450 – volume: 421 start-page: 219 year: 2017 ident: B40 article-title: Distinct requirements of wls, wnt9a, wnt5b and gpc4 in regulating chondrocyte maturation and timing of endochondral ossification. publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2016.11.016 – volume: 7 start-page: 73 year: 2015 ident: B83 article-title: The Hedgehog signalling pathway in bone formation. publication-title: Int. J. Oral Sci. doi: 10.1038/ijos.2015.14 – volume: 209 start-page: 377 year: 1997 ident: B88 article-title: Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. publication-title: Dev. Dyn. doi: 10.1002/(sici)1097-0177(199708)209:4<377::aid-aja5>3.0.co;2-f – volume: 76 start-page: 3939 year: 2019 ident: B11 article-title: Mechanisms of synovial joint and articular cartilage development. publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-019-03191-5 – volume: 13 start-page: 3186 year: 2009 ident: B50 article-title: Involvement of SOX-9 and FGF-23 in RUNX-2 regulation in osteoarthritic chondrocytes. publication-title: J. Cell. Mol. Med. doi: 10.1111/j.1582-4934.2009.00678.x – volume: 8 start-page: 739 year: 2005 ident: B16 article-title: Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. publication-title: Dev. Cell doi: 10.1016/j.devcel.2005.03.016 – volume: 6 year: 2016 ident: B63 article-title: Notch signaling indirectly promotes chondrocyte hypertrophy via regulation of BMP signaling and cell cycle arrest. publication-title: Sci. Rep. doi: 10.1038/srep25594 – volume: 8 start-page: 21 year: 2018 ident: B65 article-title: Immunohistochemistry evaluation of TGF-β1, SOX-9, Type II collagen and aggrecan in cartilage lesions treated with conditioned medium of umbilical cord mesencyhmal stem cells in wistar mice (Rattus novergicus). publication-title: J. Tropic. Life Sci. doi: 10.11594/jtls.08.01.05 – volume: 12 year: 2010 ident: B37 article-title: A role for age-related changes in TGFβ signaling in aberrant chondrocyte diff erentiation and osteoarthritis. publication-title: Arthritis Res. Ther. doi: 10.1186/ar2896 – volume: 165 start-page: 49 year: 2019 ident: B6 article-title: Chondrocyte dedifferentiation and osteoarthritis (OA). publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2019.02.036 – volume: 79 start-page: 975 year: 2020 ident: B3 article-title: BCP crystals promote chondrocyte hypertrophic differentiation in OA cartilage by sequestering Wnt3a. publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2019-216648 – volume: 233 start-page: 8962 year: 2018 ident: B21 article-title: Time-dependent contribution of BMP, FGF, IGF, and HH signaling to the proliferation of mesenchymal stroma cells during chondrogenesis. publication-title: J. Cell. Physiol. doi: 10.1002/jcp.26832 – volume: 28 start-page: 2064 year: 2013 ident: B69 article-title: An analysis of skeletal development in osteoblast-specific and chondrocyte-specific runt-related transcription factor-2 (Runx2) knockout mice. publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.1945 – volume: 10 year: 2020 ident: B92 article-title: Notch signaling in skeletal development, homeostasis and pathogenesis. publication-title: Biomolecules doi: 10.3390/biom10020332 – volume: 25 start-page: 332 year: 2017 ident: B7 article-title: SOX9 protein is stabilized by TGF-beta and regulates PAPSS2 mRNA expression in chondrocytes. publication-title: Osteoarthritis Cartilage doi: 10.1016/j.joca.2016.10.007 – volume: 41 start-page: 29 year: 1999 ident: B32 article-title: Involvement of wnt-5a in chondrogenic pattern formation in the chick limb bud. publication-title: Dev. Growth Differ. doi: 10.1046/j.1440-169x.1999.00402.x – volume: 281 start-page: 22039 year: 2006 ident: B58 article-title: Opposing roles of WNT-5A and WNT-11 in interleukin-1beta regulation of type II collagen expression in articular chondrocytes. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M601804200 – volume: 528 start-page: 272 year: 2015 ident: B13 article-title: FGF signalling regulates bone growth through autophagy. publication-title: Nature doi: 10.1038/nature16063 – volume: 54 start-page: 2462 year: 2006 ident: B30 article-title: Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. publication-title: Arthritis Rheum. doi: 10.1002/art.22041 – volume: 6 start-page: 258 year: 2019 ident: B86 article-title: Transcriptomic landscape regulated by the 14 types of bone morphogenetic proteins (BMPs) in lineage commitment and differentiation of mesenchymal stem cells (MSCs). publication-title: Genes Dis. doi: 10.1016/j.gendis.2019.03.008 – volume: 36 start-page: 413 year: 2017 ident: B5 article-title: Basic Science of Articular Cartilage. publication-title: Clin. Sports Med. doi: 10.1016/j.csm.2017.02.001 – volume: 53 start-page: 530 year: 2020 ident: B67 article-title: Glutamine metabolism controls chondrocyte identity and function. publication-title: Dev. Cell doi: 10.1016/j.devcel.2020.05.001 – volume: 114 start-page: 735 year: 2013 ident: B20 article-title: Fibroblast growth factor control of cartilage homeostasis. publication-title: J. Cell. Biochem. doi: 10.1002/jcb.24418 – volume: 143 start-page: 1811 year: 2016 ident: B31 article-title: FGF signaling in the osteoprogenitor lineage non-autonomously regulates postnatal chondrocyte proliferation and skeletal growth. publication-title: Development doi: 10.1242/dev.131722 – volume: 230 start-page: 234 year: 2017 ident: B53 article-title: Interplay between cytoskeletal polymerization and the chondrogenic phenotype in chondrocytes passaged in monolayer culture. publication-title: J. Anat. doi: 10.1111/joa.12554 – volume: 193 start-page: 551 year: 2011 ident: B48 article-title: WNT-3A modulates articular chondrocyte phenotype by activating both canonical and noncanonical pathways. publication-title: J. Cell Biol. doi: 10.1083/jcb.201011051 – volume: 18 start-page: 952 year: 2004 ident: B85 article-title: Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. publication-title: Genes Dev. doi: 10.1101/gad.1174704 – volume: 227 start-page: 3446 year: 2012 ident: B18 article-title: Targeting Runx2 expression in hypertrophic chondrocytes impairs endochondral ossification during early skeletal development. publication-title: J. Cell. Physiol. doi: 10.1002/jcp.24045 – volume: 962 start-page: 83 year: 2017 ident: B35 article-title: Roles of Runx2 in skeletal development. publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-981-10-3233-2_6 – volume: 15 start-page: 6097 year: 2020 ident: B9 article-title: Growth factor and its polymer scaffold-based delivery system for cartilage tissue engineering. publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S249829 – volume: 174 start-page: R1 year: 2002 ident: B33 article-title: Expression and localization of Indian hedgehog (Ihh) and parathyroid hormone related protein (PTHrP) in the human growth plate during pubertal development. publication-title: J. Endocrinol. doi: 10.1677/joe.0.174r001 – volume: 10 year: 2018 ident: B23 article-title: TGF-β family signaling in mesenchymal differentiation. publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a022202 – volume: 107 start-page: 10202 year: 2010 ident: B51 article-title: Extracellular sulfatases support cartilage homeostasis by regulating BMP and FGF signaling pathways. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0913897107 – volume: 18 start-page: 1072 year: 2004 ident: B2 article-title: Interactions between Sox9 and β-catenin control chondrocyte differentiation. publication-title: Genes Dev. doi: 10.1101/gad.1171104 – volume: 19 start-page: 461 year: 2012 ident: B24 article-title: Notch1 signaling regulates chondrogenic lineage determination through Sox9 activation. publication-title: Cell Death Differ. doi: 10.1038/cdd.2011.114 – volume: 14 year: 2012 ident: B52 article-title: Bone morphogenetic protein-2-induced Wnt/beta-catenin signaling pathway activation through enhanced low-density-lipoprotein receptor-related protein 5 catabolic activity contributes to hypertrophy in osteoarthritic chondrocytes. publication-title: Arthritis Res. Ther. doi: 10.1186/ar3805 – volume: 23 start-page: 443 year: 2015 ident: B15 article-title: Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation. publication-title: Osteoarthritis Cartilage doi: 10.1016/j.joca.2014.11.013 – volume: 102 start-page: 18023 year: 2005 ident: B34 article-title: BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0503617102 – volume: 366 start-page: 101 year: 2016 ident: B89 article-title: BMP2 induces chondrogenic differentiation, osteogenic differentiation and endochondral ossification in stem cells. publication-title: Cell Tissue Res. doi: 10.1007/s00441-016-2403-0 – volume: 208 start-page: 77 year: 2006 ident: B19 article-title: Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. publication-title: J. Cell. Physiol. doi: 10.1002/jcp.20656 – volume: 21 year: 2020 ident: B56 article-title: The role of chondrocyte hypertrophy and senescence in osteoarthritis initiation and progression. publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21072358 – volume: 9 year: 2019 ident: B78 article-title: Notch signaling regulates MMP-13 expression via Runx2 in chondrocytes. publication-title: Sci. Rep. doi: 10.1038/s41598-019-52125-5 – volume: 142 start-page: 817 year: 2015 ident: B36 article-title: A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. publication-title: Development doi: 10.1242/dev.105536 |
SSID | ssj0001257583 |
Score | 2.5011916 |
SecondaryResourceType | review_article |
Snippet | Cartilage is a kind of connective tissue that buffers pressure and is essential to protect joint movement. It is difficult to self-recover once cartilage is... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 664168 |
SubjectTerms | Cell and Developmental Biology chondrocyte FGF growth factor TGF-β transcription factor Wnt |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vKngS6qZJm22PvpZFWPGgsLfQyYNd0K649eC_d6bpyvaiF69tStIv05n50uQbxi6UBO8FuBijjYnTjJu4TOwgdpnxeZE6kwOdHR4_qtFL-jDJJiulvmhPWJAHDsD1eZo4K2WJcZWnRrncCFClTyDltgBhyftizFshU2F1BdOQXIbfmMjCir6nhXDkgyK5UgqzkLwTiBq9_k6S2d0iuRJzhttsq00Wo-swyB225qpdthHKR37tsfvxsrZtNHZ0gne2eFtEcx_dTuekQ2C-ahc9UVke78JER2Vlo7u2JkodZmWfvQzvn29HcVsWITaYTdXoEpwEDrZUCkqbWY-syUuFHBdjO6DzUqRBJ5T0RSbAuwwG6MMMadclBSCWB2y9mlfukEUpOEw5EuWMBcyLZJ4iXeToc7K8lMJCj_ElRtq0muFUuuJVI3cgWHUDqyZYdYC1xy5_HnkPghm_Nb4h4H8aktZ1cwEtQLcWoP-ygB47X06bxm-D-igrN_9caEHqgkINCt5jg858dnrs3qlm00ZlG8FC7suP_mOIx2yT3pp2HYj8hK3XH5_uFJOZGs4au_0GtlH0kw priority: 102 providerName: Directory of Open Access Journals |
Title | Molecular Mechanisms of Chondrocyte Proliferation and Differentiation |
URI | https://www.proquest.com/docview/2540726790 https://pubmed.ncbi.nlm.nih.gov/PMC8194090 https://doaj.org/article/041ed33a89304c6e8c2b6af1b40d9b2d |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SlEIvoemDbpsGB3oqOJUlWWsfQmlehMKWHrqwN-HRowmkdrvrQPbfd8b2hhhCIUfbsmV_I2m-kaVvAD4ahTFKDCl5G5fqXLi0yvw0DbmLRamDK5D3Ds--m4u5_rbIF1uwSW81ALh6MLTjfFLz5fXh7d_1F-rwRxxxkr_9HHmOm0I9mR0aQwSjeAJPyTEZbuSzge33Uy7ETTphTilLkxqlF_1_zoefMvJUnaD_iIWO11Dec0rnL2BnYJPJ1978u7AV6pfwrM8vuX4FZ7NN8ttkFniL79Xq9yppYnJy2bBQgVu3IfnBeXti6FtCUtU-OR2SprS92V7D_Pzs58lFOuRNSB3RrZbGjKBQoK-MwcrnPlJYFZWhIJicP9LoZlikThoVy1xiDDlOaZBzLG6XleiVegPbdVOHt5BoDMRJMhOcRyJOqtAUTwoalPKiUtLjBMQGI-sGUXHObXFtKbhgWG0Hq2VYbQ_rBD7d3fKnV9T4X-FjBv6uIIthdyea5S879C0rdBborSuiXkI7Ewon0VQxQy18idJP4GBjNkudh-uo6tDcrKxk-UFppqWYwHRkz1GN4yv11WUnw01gUXAs3j3me97Dcz7i5Qey2IPtdnkTPhCraXG_mw3Y71rsPxll9sQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Mechanisms+of+Chondrocyte+Proliferation+and+Differentiation&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Chen%2C+Hui&rft.au=Tan%2C+Xiao-Ning&rft.au=Hu%2C+Shi&rft.au=Liu%2C+Ren-Qin&rft.date=2021-05-28&rft.issn=2296-634X&rft.eissn=2296-634X&rft.volume=9&rft_id=info:doi/10.3389%2Ffcell.2021.664168&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fcell_2021_664168 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon |