Molecular Mechanisms of Chondrocyte Proliferation and Differentiation

Cartilage is a kind of connective tissue that buffers pressure and is essential to protect joint movement. It is difficult to self-recover once cartilage is damaged due to the lack of blood vessels, lymph, and nerve tissues. Repair of cartilage injury is mainly achieved by stimulating chondrocyte pr...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in cell and developmental biology Vol. 9; p. 664168
Main Authors Chen, Hui, Tan, Xiao-Ning, Hu, Shi, Liu, Ren-Qin, Peng, Li-Hong, Li, Yong-Min, Wu, Ping
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 28.05.2021
Subjects
Online AccessGet full text
ISSN2296-634X
2296-634X
DOI10.3389/fcell.2021.664168

Cover

Loading…
Abstract Cartilage is a kind of connective tissue that buffers pressure and is essential to protect joint movement. It is difficult to self-recover once cartilage is damaged due to the lack of blood vessels, lymph, and nerve tissues. Repair of cartilage injury is mainly achieved by stimulating chondrocyte proliferation and extracellular matrix (ECM) synthesis. Cartilage homeostasis involves the regulation of multiple growth factors and the transduction of cellular signals. It is a very complicated process that has not been elucidated in detail. In this review, we summarized a variety of signaling molecules related to chondrocytes function. Especially, we described the correlation between chondrocyte-specific regulatory factors and cell signaling molecules. It has potential significance for guiding the treatment of cartilage injury.
AbstractList Cartilage is a kind of connective tissue that buffers pressure and is essential to protect joint movement. It is difficult to self-recover once cartilage is damaged due to the lack of blood vessels, lymph, and nerve tissues. Repair of cartilage injury is mainly achieved by stimulating chondrocyte proliferation and extracellular matrix (ECM) synthesis. Cartilage homeostasis involves the regulation of multiple growth factors and the transduction of cellular signals. It is a very complicated process that has not been elucidated in detail. In this review, we summarized a variety of signaling molecules related to chondrocytes function. Especially, we described the correlation between chondrocyte-specific regulatory factors and cell signaling molecules. It has potential significance for guiding the treatment of cartilage injury.
Cartilage is a kind of connective tissue that buffers pressure and is essential to protect joint movement. It is difficult to self-recover once cartilage is damaged due to the lack of blood vessels, lymph, and nerve tissues. Repair of cartilage injury is mainly achieved by stimulating chondrocyte proliferation and extracellular matrix (ECM) synthesis. Cartilage homeostasis involves the regulation of multiple growth factors and the transduction of cellular signals. It is a very complicated process that has not been elucidated in detail. In this review, we summarized a variety of signaling molecules related to chondrocytes function. Especially, we described the correlation between chondrocyte-specific regulatory factors and cell signaling molecules. It has potential significance for guiding the treatment of cartilage injury.Cartilage is a kind of connective tissue that buffers pressure and is essential to protect joint movement. It is difficult to self-recover once cartilage is damaged due to the lack of blood vessels, lymph, and nerve tissues. Repair of cartilage injury is mainly achieved by stimulating chondrocyte proliferation and extracellular matrix (ECM) synthesis. Cartilage homeostasis involves the regulation of multiple growth factors and the transduction of cellular signals. It is a very complicated process that has not been elucidated in detail. In this review, we summarized a variety of signaling molecules related to chondrocytes function. Especially, we described the correlation between chondrocyte-specific regulatory factors and cell signaling molecules. It has potential significance for guiding the treatment of cartilage injury.
Author Hu, Shi
Chen, Hui
Liu, Ren-Qin
Tan, Xiao-Ning
Wu, Ping
Peng, Li-Hong
Li, Yong-Min
AuthorAffiliation 3 Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University , Xiangtan , China
2 The Affiliated Hospital of Hunan Academy of Chinese Medicine , Changsha , China
1 Hunan University of Chinese Medicine & Hunan Academy of Chinese Medicine , Changsha , China
5 School of Computer, Hunan University of Technology , Zhuzhou , China
4 Center for Bionic Sensing and Intelligence, Institute of Bio-medical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , China
AuthorAffiliation_xml – name: 1 Hunan University of Chinese Medicine & Hunan Academy of Chinese Medicine , Changsha , China
– name: 2 The Affiliated Hospital of Hunan Academy of Chinese Medicine , Changsha , China
– name: 4 Center for Bionic Sensing and Intelligence, Institute of Bio-medical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , China
– name: 3 Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University , Xiangtan , China
– name: 5 School of Computer, Hunan University of Technology , Zhuzhou , China
Author_xml – sequence: 1
  givenname: Hui
  surname: Chen
  fullname: Chen, Hui
– sequence: 2
  givenname: Xiao-Ning
  surname: Tan
  fullname: Tan, Xiao-Ning
– sequence: 3
  givenname: Shi
  surname: Hu
  fullname: Hu, Shi
– sequence: 4
  givenname: Ren-Qin
  surname: Liu
  fullname: Liu, Ren-Qin
– sequence: 5
  givenname: Li-Hong
  surname: Peng
  fullname: Peng, Li-Hong
– sequence: 6
  givenname: Yong-Min
  surname: Li
  fullname: Li, Yong-Min
– sequence: 7
  givenname: Ping
  surname: Wu
  fullname: Wu, Ping
BookMark eNp9kT1vFDEQhi0URELID6DbkuYOf6_dIKEjQKREUIBEZ_ljnHPks4O9h5R_z95ehAgFle2ZeZ-Z8fsSnZRaAKHXBK8ZU_pt9JDzmmJK1lJyItUzdEaplivJ-I-Tv-6n6KL3O4wxoWIUir1Ap4wTyjEXZ-jypmbw-2zbcAN-a0vquz7UOGy2tYRW_cMEw9dWc4rQ7JRqGWwJw4cU5zeUKS2xV-h5tLnDxeN5jr5_vPy2-by6_vLpavP-euUFVtOKjcAcdsFK6WwQIVJFI5MjpxoTpwmRWHJBJYtaUBdBuDEE8FgRRbQLjJ2jqyM3VHtn7lva2fZgqk1mCdR2a2ybks9gMCcwK6zSDHMvQXnqpI3EcRy0o2FmvTuy7vduB8HPyzSbn0CfZkramtv6y8yzcKzxDHjzCGj15x76ZHapH0yxBeq-Gyo4Hqkcl1JyLPWt9t4g_mlDsDm4aRY3zcFNc3Rz1oz_aHyalt-ep0n5P8rf5XqnWA
CitedBy_id crossref_primary_10_1111_boc_202300042
crossref_primary_10_1186_s12964_024_01533_w
crossref_primary_10_3389_fbioe_2023_1127949
crossref_primary_10_1038_s41420_022_01105_2
crossref_primary_10_1039_D4AN00315B
crossref_primary_10_4103_mjdrdypu_mjdrdypu_381_24
crossref_primary_10_1089_scd_2024_0033
crossref_primary_10_23838_pfm_2023_00100
crossref_primary_10_1002_dvg_23509
crossref_primary_10_3390_pharmaceutics16081095
crossref_primary_10_6065_apem_2244120_060
crossref_primary_10_1038_s41598_023_41874_z
crossref_primary_10_62347_AFVA1238
crossref_primary_10_1016_j_isci_2022_105370
crossref_primary_10_1002_jbm4_10617
crossref_primary_10_3390_ijms242216148
crossref_primary_10_3390_biology12040558
crossref_primary_10_3390_ijms242115883
crossref_primary_10_1007_s00018_024_05331_y
crossref_primary_10_1080_14786419_2024_2429111
crossref_primary_10_3389_fphar_2022_952950
crossref_primary_10_3390_ijms26031007
crossref_primary_10_1021_acs_biomac_3c01444
crossref_primary_10_7554_eLife_91883
crossref_primary_10_1002_mco2_657
crossref_primary_10_3389_fcell_2023_1184550
crossref_primary_10_1161_CIRCRESAHA_123_323365
crossref_primary_10_3390_ijms24021512
crossref_primary_10_3390_ani13081301
crossref_primary_10_3390_bioengineering10060741
crossref_primary_10_3390_cells12182301
crossref_primary_10_1021_acsbiomaterials_4c01107
crossref_primary_10_1038_s41392_024_01931_z
crossref_primary_10_1073_pnas_2220159120
crossref_primary_10_3389_fcell_2022_979096
crossref_primary_10_3390_life12070939
crossref_primary_10_3892_ijmm_2022_5103
crossref_primary_10_1177_20417314241279935
crossref_primary_10_3390_cimb46050251
crossref_primary_10_3389_fbioe_2022_934179
crossref_primary_10_3389_fphar_2024_1423062
crossref_primary_10_3390_genes14030534
crossref_primary_10_3389_fimmu_2022_802440
crossref_primary_10_1007_s13770_024_00662_0
crossref_primary_10_1038_s41598_024_62516_y
crossref_primary_10_7554_eLife_91883_3
crossref_primary_10_31393_morphology_journal_2023_29_4__03
crossref_primary_10_1038_s41598_024_82177_1
crossref_primary_10_3389_fcell_2023_1181619
crossref_primary_10_1007_s10616_024_00637_y
crossref_primary_10_3389_fvets_2024_1517349
crossref_primary_10_1088_1758_5090_acc68f
crossref_primary_10_1007_s13105_024_01008_z
crossref_primary_10_1089_ten_tec_2022_0016
crossref_primary_10_1172_jci_insight_171984
crossref_primary_10_1186_s13018_024_05055_6
crossref_primary_10_3390_ijms242015401
crossref_primary_10_1007_s13770_024_00698_2
crossref_primary_10_1111_jnc_16013
crossref_primary_10_3389_fendo_2025_1469400
crossref_primary_10_1007_s12015_023_10665_4
crossref_primary_10_1080_17435889_2024_2439242
crossref_primary_10_1016_j_gendis_2024_101241
crossref_primary_10_1088_1758_5090_adbd79
crossref_primary_10_1155_2022_1157498
crossref_primary_10_3390_genes14040838
crossref_primary_10_1186_s12872_023_03600_5
crossref_primary_10_1007_s00018_025_05622_y
Cites_doi 10.1093/hmg/ddu594
10.1073/pnas.1207458110
10.1021/bi1005199
10.1002/jcb.27391
10.1369/0022155418811645
10.3389/fgene.2019.01103
10.3390/ijms21072425
10.1101/gad.13.11.1361
10.3109/10799893.2013.856920
10.3109/10520295.2013.811285
10.1359/JBMR.0301239
10.1002/jbmr.2287
10.1016/j.biopha.2019.109388
10.1016/s1534-5807(02)00261-7
10.1177/1941738115611350
10.1126/science.273.5275.613
10.1073/pnas.97.3.1113
10.1007/s00018-019-03099-0
10.1038/boneres.2016.9
10.1074/jbc.M112.409342
10.1016/j.semcdb.2016.10.004
10.3390/cells8090969
10.3390/pharmaceutics12010073
10.1371/journal.pone.0089025
10.1002/jcp.29528
10.1006/dbio.1997.8536
10.1101/cshperspect.a021873
10.1016/j.yexcr.2009.03.008
10.1074/jbc.M808048200
10.1016/j.ecoenv.2020.111194
10.1016/j.cell.2012.05.012
10.1002/dvdy.22048
10.1016/j.joca.2009.06.008
10.1046/j.1469-7580.2002.00078.x
10.1093/ejo/cjs089
10.1016/j.joca.2004.08.008
10.1242/dev.02471
10.1073/pnas.0902306106
10.1016/j.bbrc.2004.11.067
10.1101/gad.1017802
10.4155/fsoa-2016-0034
10.1002/jbmr.1770
10.1038/nrrheum.2014.200
10.1111/cpr.12637
10.1242/dev.029926
10.1196/annals.1402.053
10.1038/s41418-017-0050-y
10.1002/art.24250
10.1196/annals.1346.002
10.1371/journal.pone.0000450
10.1016/j.ydbio.2016.11.016
10.1038/ijos.2015.14
10.1002/(sici)1097-0177(199708)209:4<377::aid-aja5>3.0.co;2-f
10.1007/s00018-019-03191-5
10.1111/j.1582-4934.2009.00678.x
10.1016/j.devcel.2005.03.016
10.1038/srep25594
10.11594/jtls.08.01.05
10.1186/ar2896
10.1016/j.bcp.2019.02.036
10.1136/annrheumdis-2019-216648
10.1002/jcp.26832
10.1002/jbmr.1945
10.3390/biom10020332
10.1016/j.joca.2016.10.007
10.1046/j.1440-169x.1999.00402.x
10.1074/jbc.M601804200
10.1038/nature16063
10.1002/art.22041
10.1016/j.gendis.2019.03.008
10.1016/j.csm.2017.02.001
10.1016/j.devcel.2020.05.001
10.1002/jcb.24418
10.1242/dev.131722
10.1111/joa.12554
10.1083/jcb.201011051
10.1101/gad.1174704
10.1002/jcp.24045
10.1007/978-981-10-3233-2_6
10.2147/IJN.S249829
10.1677/joe.0.174r001
10.1101/cshperspect.a022202
10.1073/pnas.0913897107
10.1101/gad.1171104
10.1038/cdd.2011.114
10.1186/ar3805
10.1016/j.joca.2014.11.013
10.1073/pnas.0503617102
10.1007/s00441-016-2403-0
10.1002/jcp.20656
10.3390/ijms21072358
10.1038/s41598-019-52125-5
10.1242/dev.105536
ContentType Journal Article
Copyright Copyright © 2021 Chen, Tan, Hu, Liu, Peng, Li and Wu.
Copyright © 2021 Chen, Tan, Hu, Liu, Peng, Li and Wu. 2021 Chen, Tan, Hu, Liu, Peng, Li and Wu
Copyright_xml – notice: Copyright © 2021 Chen, Tan, Hu, Liu, Peng, Li and Wu.
– notice: Copyright © 2021 Chen, Tan, Hu, Liu, Peng, Li and Wu. 2021 Chen, Tan, Hu, Liu, Peng, Li and Wu
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fcell.2021.664168
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2296-634X
ExternalDocumentID oai_doaj_org_article_041ed33a89304c6e8c2b6af1b40d9b2d
PMC8194090
10_3389_fcell_2021_664168
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
7X8
5PM
ID FETCH-LOGICAL-c508t-37e3b0bda66bad5df282f36742901b91160645263f952bfe5b7ddec081819bd33
IEDL.DBID M48
ISSN 2296-634X
IngestDate Wed Aug 27 01:27:54 EDT 2025
Thu Aug 21 18:12:38 EDT 2025
Fri Jul 11 03:17:24 EDT 2025
Tue Jul 01 03:20:23 EDT 2025
Thu Apr 24 23:09:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-37e3b0bda66bad5df282f36742901b91160645263f952bfe5b7ddec081819bd33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Tomokazu Tomo Fukuda, Iwate University, Japan
This article was submitted to Cell Growth and Division, a section of the journal Frontiers in Cell and Developmental Biology
These authors have contributed equally to this work
Reviewed by: Hiroshi Tomita, Iwate University, Japan; Kyoung-ha So, Seoul National University, South Korea
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fcell.2021.664168
PMID 34124045
PQID 2540726790
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_041ed33a89304c6e8c2b6af1b40d9b2d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8194090
proquest_miscellaneous_2540726790
crossref_primary_10_3389_fcell_2021_664168
crossref_citationtrail_10_3389_fcell_2021_664168
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-28
PublicationDateYYYYMMDD 2021-05-28
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-28
  day: 28
PublicationDecade 2020
PublicationTitle Frontiers in cell and developmental biology
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Otsuki (B51) 2010; 107
Sasai (B60) 2019; 10
Kobayashi (B34) 2005; 102
Spater (B66) 2006; 133
Wang (B75) 2004; 12
Morikawa (B46) 2016; 8
Sahni (B59) 2017; 13
Blaise (B4) 2009; 60
Carballo (B5) 2017; 36
Correa (B15) 2015; 23
Hojo (B25) 2013; 288
Rudnicki (B57) 1997; 185
Akiyama (B2) 2004; 18
Zhou (B91) 2015; 24
Wu (B76) 2016; 4
Bertrand (B3) 2020; 79
van der Kraan (B72) 2009; 17
Yamashita (B81) 2009; 315
Soetjahjo (B65) 2018; 8
Kraan (B37) 2010; 12
Ling (B40) 2017; 421
Zhao (B88) 1997; 209
Zwaka (B93) 2007; 2
Orfanidou (B50) 2009; 13
Nalesso (B48) 2011; 193
Topol (B71) 2009; 284
Wu (B77) 2007; 1116
Kawakami (B32) 1999; 41
Takarada (B69) 2013; 28
Haller (B24) 2012; 19
Ma (B42) 2020; 235
Stegen (B67) 2020; 53
Liu (B41) 2017; 62
Richter (B55) 2016; 8
Chavez (B7) 2017; 25
Charlier (B6) 2019; 165
Papathanasiou (B52) 2012; 14
Cinque (B13) 2015; 528
Hosaka (B26) 2013; 110
Xiao (B79) 2018; 119
Zhao (B87) 2002; 201
Kindblom (B33) 2002; 174
Shang (B63) 2016; 6
Murakami (B47) 2000; 97
Xie (B80) 2018; 25
Zhang (B86) 2019; 6
Clevers (B14) 2012; 149
Sassi (B62); 89
Jiang (B29) 2014; 11
Chijimatsu (B11) 2019; 76
Yan (B82) 2020; 12
Zieba (B92) 2020; 10
Nowak-Solinska (B49) 2013; 35
Sassi (B61); 34
Vortkamp (B73) 1996; 273
Xiao (B78) 2019; 9
Rim (B56) 2020; 21
Chen (B9) 2020; 15
Parreno (B53) 2017; 230
Liao (B39) 2014; 9
Ma (B43) 2019; 52
Ellman (B20) 2013; 114
Ding (B18) 2012; 227
Mead (B44) 2009; 106
Akiyama (B1) 2002; 16
Yao (B84) 2020; 206
Kamekura (B30) 2006; 54
Grafe (B23) 2018; 10
Ryu (B58) 2006; 281
Dong (B19) 2006; 208
Gamer (B22) 2009; 238
Jiang (B28) 2020; 21
Day (B16) 2005; 8
Fischer (B21) 2018; 233
Sun (B68) 2020; 122
Kronenberg (B38) 2006; 1068
Thielen (B70) 2019; 8
Chen (B8) 2014; 29
Chen (B10) 2013; 28
Komori (B35) 2017; 962
Janssen (B27) 2019; 67
Wan (B74) 2005; 328
Kozhemyakina (B36) 2015; 142
Shu (B64) 2016; 2
Diederichs (B17) 2019; 76
Karuppaiah (B31) 2016; 143
Chuang (B12) 2010; 49
Retting (B54) 2009; 136
Zhou (B89) 2016; 366
Yoshida (B85) 2004; 18
Minina (B45) 2002; 3
Zhou (B90) 2004; 19
Yang (B83) 2015; 7
References_xml – volume: 24
  start-page: 1764
  year: 2015
  ident: B91
  article-title: Mutant activated FGFR3 impairs endochondral bone growth by preventing SOX9 downregulation in differentiating chondrocytes.
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddu594
– volume: 110
  start-page: 1875
  year: 2013
  ident: B26
  article-title: Notch signaling in chondrocytes modulates endochondral ossification and osteoarthritis development.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1207458110
– volume: 49
  start-page: 5524
  year: 2010
  ident: B12
  article-title: Heparan sulfate-dependent signaling of fibroblast growth factor 18 by chondrocyte-derived perlecan.
  publication-title: Biochemistry
  doi: 10.1021/bi1005199
– volume: 119
  start-page: 10415
  year: 2018
  ident: B79
  article-title: TGF-beta/SMAD signaling inhibits intermittent cyclic mechanical tension-induced degeneration of endplate chondrocytes by regulating the miR-455-5p/RUNX2 axis.
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.27391
– volume: 67
  start-page: 117
  year: 2019
  ident: B27
  article-title: The influence of TGF-beta3, EGF, and BGN on SOX9 and RUNX2 expression in human chondrogenic progenitor cells.
  publication-title: J. Histochem. Cytochem.
  doi: 10.1369/0022155418811645
– volume: 10
  year: 2019
  ident: B60
  article-title: Hedgehog signal and genetic disorders.
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.01103
– volume: 21
  year: 2020
  ident: B28
  article-title: Antxr1, which is a target of Runx2, regulates chondrocyte proliferation and apoptosis.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21072425
– volume: 13
  start-page: 1361
  year: 2017
  ident: B59
  article-title: FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway.
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.11.1361
– volume: 34
  start-page: 48
  ident: B61
  article-title: Notch signaling is involved in human articular chondrocytes de-differentiation during osteoarthritis.
  publication-title: J. Recept. Signal. Transduct. Res.
  doi: 10.3109/10799893.2013.856920
– volume: 89
  start-page: 29
  ident: B62
  article-title: Wnt signaling is involved in human articular chondrocyte de-differentiation in vitro.
  publication-title: Biotech. Histochem.
  doi: 10.3109/10520295.2013.811285
– volume: 19
  start-page: 463
  year: 2004
  ident: B90
  article-title: Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells.
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/JBMR.0301239
– volume: 29
  start-page: 2653
  year: 2014
  ident: B8
  article-title: Runx2 regulates endochondral ossification through control of chondrocyte proliferation and differentiation.
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.2287
– volume: 122
  year: 2020
  ident: B68
  article-title: Salidroside enhances proliferation and maintains phenotype of articular chondrocytes for autologous chondrocyte implantation (ACI) via TGF-beta/Smad3 Signal.
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2019.109388
– volume: 3
  start-page: 439
  year: 2002
  ident: B45
  article-title: Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation.
  publication-title: Dev. Cell
  doi: 10.1016/s1534-5807(02)00261-7
– volume: 8
  start-page: 153
  year: 2016
  ident: B55
  article-title: Knee articular cartilage repair and restoration techniques: a review of the literature.
  publication-title: Sports Health
  doi: 10.1177/1941738115611350
– volume: 273
  start-page: 613
  year: 1996
  ident: B73
  article-title: Regulation of rate of cartilage differentiation by Indian Hedgehog and elat elated protein.
  publication-title: Science
  doi: 10.1126/science.273.5275.613
– volume: 97
  start-page: 1113
  year: 2000
  ident: B47
  article-title: Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.97.3.1113
– volume: 76
  start-page: 3875
  year: 2019
  ident: B17
  article-title: Regulation of WNT5A and WNT11 during MSC in vitro chondrogenesis: WNT inhibition lowers BMP and hedgehog activity, and reduces hypertrophy.
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-019-03099-0
– volume: 4
  year: 2016
  ident: B76
  article-title: TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease.
  publication-title: Bone Res.
  doi: 10.1038/boneres.2016.9
– volume: 288
  start-page: 9924
  year: 2013
  ident: B25
  article-title: Hedgehog-Gli activators direct osteo-chondrogenic function of bone morphogenetic protein toward osteogenesis in the perichondrium.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.409342
– volume: 62
  start-page: 34
  year: 2017
  ident: B41
  article-title: Transcriptional control of chondrocyte specification and differentiation.
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2016.10.004
– volume: 8
  year: 2019
  ident: B70
  article-title: TGFbeta/BMP signaling pathway in cartilage homeostasis.
  publication-title: Cells
  doi: 10.3390/cells8090969
– volume: 12
  year: 2020
  ident: B82
  article-title: Induction of WNT16 via Peptide-mRNA nanoparticle-based delivery maintains cartilage homeostasis.
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics12010073
– volume: 9
  year: 2014
  ident: B39
  article-title: Sox9 potentiates BMP2-induced chondrogenic differentiation and inhibits BMP2-induced osteogenic differentiation.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0089025
– volume: 235
  start-page: 6023
  year: 2020
  ident: B42
  article-title: Novel insights into Dhh signaling in antler chondrocyte proliferation and differentiation: involvement of Foxa.
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.29528
– volume: 185
  start-page: 104
  year: 1997
  ident: B57
  article-title: Inhibition of chondrogenesis by wnt gene expression in vivo and in vitro.
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.1997.8536
– volume: 8
  year: 2016
  ident: B46
  article-title: TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology.
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a021873
– volume: 315
  start-page: 2231
  year: 2009
  ident: B81
  article-title: Sox9 directly promotes Bapx1 gene expression to repress Runx2 in chondrocytes.
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2009.03.008
– volume: 284
  start-page: 3323
  year: 2009
  ident: B71
  article-title: Sox9 inhibits Wnt signaling by promoting beta-catenin phosphorylation in the nucleus.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M808048200
– volume: 206
  year: 2020
  ident: B84
  article-title: Effect of total flavonoids of Rhizoma Drynariae in thiram induced cytotoxicity of chondrocyte via BMP-2/Runx2 and IHH/PTHrP expressions.
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.111194
– volume: 149
  start-page: 1192
  year: 2012
  ident: B14
  article-title: Wnt/beta-catenin signaling and disease.
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.012
– volume: 238
  start-page: 2374
  year: 2009
  ident: B22
  article-title: Overexpression of BMP3 in the developing skeleton alters endochondral bone formation resulting in spontaneous rib fractures.
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.22048
– volume: 17
  start-page: 1539
  year: 2009
  ident: B72
  article-title: TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis: modulation and integration of signaling pathways through receptor-Smads.
  publication-title: Osteoarthritis Cartilage
  doi: 10.1016/j.joca.2009.06.008
– volume: 201
  start-page: 137
  year: 2002
  ident: B87
  article-title: Expression of parathyroid hormone-related peptide (PTHrP) and its receptor (PTH1R) during the histogenesis of cartilage and bone in the chicken mandibular process.
  publication-title: J. Anat.
  doi: 10.1046/j.1469-7580.2002.00078.x
– volume: 35
  start-page: 826
  year: 2013
  ident: B49
  article-title: The effect of naringin on early growth and development of the spheno-occipital synchondrosis as measured by the expression of PTHrP and Sox9–an in vitro model.
  publication-title: Eur. J. Orthod.
  doi: 10.1093/ejo/cjs089
– volume: 12
  start-page: 963
  year: 2004
  ident: B75
  article-title: Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage.
  publication-title: Osteoarthritis Cartilage
  doi: 10.1016/j.joca.2004.08.008
– volume: 133
  start-page: 3039
  year: 2006
  ident: B66
  article-title: Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis.
  publication-title: Development
  doi: 10.1242/dev.02471
– volume: 106
  start-page: 14420
  year: 2009
  ident: B44
  article-title: Notch pathway regulation of chondrocyte differentiation and proliferation during appendicular and axial skeleton development.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0902306106
– volume: 328
  start-page: 651
  year: 2005
  ident: B74
  article-title: BMP signaling in skeletal development.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2004.11.067
– volume: 16
  start-page: 2813
  year: 2002
  ident: B1
  article-title: The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6.
  publication-title: Genes Dev.
  doi: 10.1101/gad.1017802
– volume: 2
  year: 2016
  ident: B64
  article-title: Use of FGF-2 and FGF-18 to direct bone marrow stromal stem cells to chondrogenic and osteogenic lineages.
  publication-title: Future Sci. OA
  doi: 10.4155/fsoa-2016-0034
– volume: 28
  start-page: 649
  year: 2013
  ident: B10
  article-title: Notch gain of function inhibits chondrocyte differentiation via Rbpj-dependent suppression of Sox9.
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.1770
– volume: 11
  start-page: 206
  year: 2014
  ident: B29
  article-title: Origin and function of cartilage stem/progenitor cells in osteoarthritis.
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/nrrheum.2014.200
– volume: 52
  year: 2019
  ident: B43
  article-title: Function and regulation of transforming growth factor beta1 signalling in antler chondrocyte proliferation and differentiation.
  publication-title: Cell Prolif.
  doi: 10.1111/cpr.12637
– volume: 136
  start-page: 1093
  year: 2009
  ident: B54
  article-title: BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation.
  publication-title: Development
  doi: 10.1242/dev.029926
– volume: 1116
  start-page: 29
  year: 2007
  ident: B77
  article-title: Multiplicity of BMP signaling in skeletal development.
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1402.053
– volume: 25
  start-page: 1442
  year: 2018
  ident: B80
  article-title: Non-canonical Wnt induces chondrocyte de-differentiation through Frizzled 6 and DVL-2/B-raf/CaMKIIα/syndecan 4 axis.
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-017-0050-y
– volume: 60
  start-page: 428
  year: 2009
  ident: B4
  article-title: Involvement of the Notch pathway in the regulation of matrix metalloproteinase 13 and the dedifferentiation of articular chondrocytes in murine cartilage.
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.24250
– volume: 1068
  start-page: 1
  year: 2006
  ident: B38
  article-title: PTHrP and skeletal development.
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1346.002
– volume: 2
  year: 2007
  ident: B93
  article-title: Conditional expression of Wnt4 during chondrogenesis leads to dwarfism in mice.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0000450
– volume: 421
  start-page: 219
  year: 2017
  ident: B40
  article-title: Distinct requirements of wls, wnt9a, wnt5b and gpc4 in regulating chondrocyte maturation and timing of endochondral ossification.
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2016.11.016
– volume: 7
  start-page: 73
  year: 2015
  ident: B83
  article-title: The Hedgehog signalling pathway in bone formation.
  publication-title: Int. J. Oral Sci.
  doi: 10.1038/ijos.2015.14
– volume: 209
  start-page: 377
  year: 1997
  ident: B88
  article-title: Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis.
  publication-title: Dev. Dyn.
  doi: 10.1002/(sici)1097-0177(199708)209:4<377::aid-aja5>3.0.co;2-f
– volume: 76
  start-page: 3939
  year: 2019
  ident: B11
  article-title: Mechanisms of synovial joint and articular cartilage development.
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-019-03191-5
– volume: 13
  start-page: 3186
  year: 2009
  ident: B50
  article-title: Involvement of SOX-9 and FGF-23 in RUNX-2 regulation in osteoarthritic chondrocytes.
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/j.1582-4934.2009.00678.x
– volume: 8
  start-page: 739
  year: 2005
  ident: B16
  article-title: Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2005.03.016
– volume: 6
  year: 2016
  ident: B63
  article-title: Notch signaling indirectly promotes chondrocyte hypertrophy via regulation of BMP signaling and cell cycle arrest.
  publication-title: Sci. Rep.
  doi: 10.1038/srep25594
– volume: 8
  start-page: 21
  year: 2018
  ident: B65
  article-title: Immunohistochemistry evaluation of TGF-β1, SOX-9, Type II collagen and aggrecan in cartilage lesions treated with conditioned medium of umbilical cord mesencyhmal stem cells in wistar mice (Rattus novergicus).
  publication-title: J. Tropic. Life Sci.
  doi: 10.11594/jtls.08.01.05
– volume: 12
  year: 2010
  ident: B37
  article-title: A role for age-related changes in TGFβ signaling in aberrant chondrocyte diff erentiation and osteoarthritis.
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/ar2896
– volume: 165
  start-page: 49
  year: 2019
  ident: B6
  article-title: Chondrocyte dedifferentiation and osteoarthritis (OA).
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2019.02.036
– volume: 79
  start-page: 975
  year: 2020
  ident: B3
  article-title: BCP crystals promote chondrocyte hypertrophic differentiation in OA cartilage by sequestering Wnt3a.
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/annrheumdis-2019-216648
– volume: 233
  start-page: 8962
  year: 2018
  ident: B21
  article-title: Time-dependent contribution of BMP, FGF, IGF, and HH signaling to the proliferation of mesenchymal stroma cells during chondrogenesis.
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.26832
– volume: 28
  start-page: 2064
  year: 2013
  ident: B69
  article-title: An analysis of skeletal development in osteoblast-specific and chondrocyte-specific runt-related transcription factor-2 (Runx2) knockout mice.
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.1945
– volume: 10
  year: 2020
  ident: B92
  article-title: Notch signaling in skeletal development, homeostasis and pathogenesis.
  publication-title: Biomolecules
  doi: 10.3390/biom10020332
– volume: 25
  start-page: 332
  year: 2017
  ident: B7
  article-title: SOX9 protein is stabilized by TGF-beta and regulates PAPSS2 mRNA expression in chondrocytes.
  publication-title: Osteoarthritis Cartilage
  doi: 10.1016/j.joca.2016.10.007
– volume: 41
  start-page: 29
  year: 1999
  ident: B32
  article-title: Involvement of wnt-5a in chondrogenic pattern formation in the chick limb bud.
  publication-title: Dev. Growth Differ.
  doi: 10.1046/j.1440-169x.1999.00402.x
– volume: 281
  start-page: 22039
  year: 2006
  ident: B58
  article-title: Opposing roles of WNT-5A and WNT-11 in interleukin-1beta regulation of type II collagen expression in articular chondrocytes.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M601804200
– volume: 528
  start-page: 272
  year: 2015
  ident: B13
  article-title: FGF signalling regulates bone growth through autophagy.
  publication-title: Nature
  doi: 10.1038/nature16063
– volume: 54
  start-page: 2462
  year: 2006
  ident: B30
  article-title: Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability.
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.22041
– volume: 6
  start-page: 258
  year: 2019
  ident: B86
  article-title: Transcriptomic landscape regulated by the 14 types of bone morphogenetic proteins (BMPs) in lineage commitment and differentiation of mesenchymal stem cells (MSCs).
  publication-title: Genes Dis.
  doi: 10.1016/j.gendis.2019.03.008
– volume: 36
  start-page: 413
  year: 2017
  ident: B5
  article-title: Basic Science of Articular Cartilage.
  publication-title: Clin. Sports Med.
  doi: 10.1016/j.csm.2017.02.001
– volume: 53
  start-page: 530
  year: 2020
  ident: B67
  article-title: Glutamine metabolism controls chondrocyte identity and function.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2020.05.001
– volume: 114
  start-page: 735
  year: 2013
  ident: B20
  article-title: Fibroblast growth factor control of cartilage homeostasis.
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.24418
– volume: 143
  start-page: 1811
  year: 2016
  ident: B31
  article-title: FGF signaling in the osteoprogenitor lineage non-autonomously regulates postnatal chondrocyte proliferation and skeletal growth.
  publication-title: Development
  doi: 10.1242/dev.131722
– volume: 230
  start-page: 234
  year: 2017
  ident: B53
  article-title: Interplay between cytoskeletal polymerization and the chondrogenic phenotype in chondrocytes passaged in monolayer culture.
  publication-title: J. Anat.
  doi: 10.1111/joa.12554
– volume: 193
  start-page: 551
  year: 2011
  ident: B48
  article-title: WNT-3A modulates articular chondrocyte phenotype by activating both canonical and noncanonical pathways.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201011051
– volume: 18
  start-page: 952
  year: 2004
  ident: B85
  article-title: Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog.
  publication-title: Genes Dev.
  doi: 10.1101/gad.1174704
– volume: 227
  start-page: 3446
  year: 2012
  ident: B18
  article-title: Targeting Runx2 expression in hypertrophic chondrocytes impairs endochondral ossification during early skeletal development.
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.24045
– volume: 962
  start-page: 83
  year: 2017
  ident: B35
  article-title: Roles of Runx2 in skeletal development.
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-981-10-3233-2_6
– volume: 15
  start-page: 6097
  year: 2020
  ident: B9
  article-title: Growth factor and its polymer scaffold-based delivery system for cartilage tissue engineering.
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S249829
– volume: 174
  start-page: R1
  year: 2002
  ident: B33
  article-title: Expression and localization of Indian hedgehog (Ihh) and parathyroid hormone related protein (PTHrP) in the human growth plate during pubertal development.
  publication-title: J. Endocrinol.
  doi: 10.1677/joe.0.174r001
– volume: 10
  year: 2018
  ident: B23
  article-title: TGF-β family signaling in mesenchymal differentiation.
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a022202
– volume: 107
  start-page: 10202
  year: 2010
  ident: B51
  article-title: Extracellular sulfatases support cartilage homeostasis by regulating BMP and FGF signaling pathways.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0913897107
– volume: 18
  start-page: 1072
  year: 2004
  ident: B2
  article-title: Interactions between Sox9 and β-catenin control chondrocyte differentiation.
  publication-title: Genes Dev.
  doi: 10.1101/gad.1171104
– volume: 19
  start-page: 461
  year: 2012
  ident: B24
  article-title: Notch1 signaling regulates chondrogenic lineage determination through Sox9 activation.
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2011.114
– volume: 14
  year: 2012
  ident: B52
  article-title: Bone morphogenetic protein-2-induced Wnt/beta-catenin signaling pathway activation through enhanced low-density-lipoprotein receptor-related protein 5 catabolic activity contributes to hypertrophy in osteoarthritic chondrocytes.
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/ar3805
– volume: 23
  start-page: 443
  year: 2015
  ident: B15
  article-title: Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation.
  publication-title: Osteoarthritis Cartilage
  doi: 10.1016/j.joca.2014.11.013
– volume: 102
  start-page: 18023
  year: 2005
  ident: B34
  article-title: BMP signaling stimulates cellular differentiation at multiple steps during cartilage development.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0503617102
– volume: 366
  start-page: 101
  year: 2016
  ident: B89
  article-title: BMP2 induces chondrogenic differentiation, osteogenic differentiation and endochondral ossification in stem cells.
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-016-2403-0
– volume: 208
  start-page: 77
  year: 2006
  ident: B19
  article-title: Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor.
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.20656
– volume: 21
  year: 2020
  ident: B56
  article-title: The role of chondrocyte hypertrophy and senescence in osteoarthritis initiation and progression.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21072358
– volume: 9
  year: 2019
  ident: B78
  article-title: Notch signaling regulates MMP-13 expression via Runx2 in chondrocytes.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-52125-5
– volume: 142
  start-page: 817
  year: 2015
  ident: B36
  article-title: A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation.
  publication-title: Development
  doi: 10.1242/dev.105536
SSID ssj0001257583
Score 2.5011916
SecondaryResourceType review_article
Snippet Cartilage is a kind of connective tissue that buffers pressure and is essential to protect joint movement. It is difficult to self-recover once cartilage is...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 664168
SubjectTerms Cell and Developmental Biology
chondrocyte
FGF
growth factor
TGF-β
transcription factor
Wnt
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ64vKngS6qZJm22PvpZFWPGgsLfQyYNd0K649eC_d6bpyvaiF69tStIv05n50uQbxi6UBO8FuBijjYnTjJu4TOwgdpnxeZE6kwOdHR4_qtFL-jDJJiulvmhPWJAHDsD1eZo4K2WJcZWnRrncCFClTyDltgBhyftizFshU2F1BdOQXIbfmMjCir6nhXDkgyK5UgqzkLwTiBq9_k6S2d0iuRJzhttsq00Wo-swyB225qpdthHKR37tsfvxsrZtNHZ0gne2eFtEcx_dTuekQ2C-ahc9UVke78JER2Vlo7u2JkodZmWfvQzvn29HcVsWITaYTdXoEpwEDrZUCkqbWY-syUuFHBdjO6DzUqRBJ5T0RSbAuwwG6MMMadclBSCWB2y9mlfukEUpOEw5EuWMBcyLZJ4iXeToc7K8lMJCj_ElRtq0muFUuuJVI3cgWHUDqyZYdYC1xy5_HnkPghm_Nb4h4H8aktZ1cwEtQLcWoP-ygB47X06bxm-D-igrN_9caEHqgkINCt5jg858dnrs3qlm00ZlG8FC7suP_mOIx2yT3pp2HYj8hK3XH5_uFJOZGs4au_0GtlH0kw
  priority: 102
  providerName: Directory of Open Access Journals
Title Molecular Mechanisms of Chondrocyte Proliferation and Differentiation
URI https://www.proquest.com/docview/2540726790
https://pubmed.ncbi.nlm.nih.gov/PMC8194090
https://doaj.org/article/041ed33a89304c6e8c2b6af1b40d9b2d
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SlEIvoemDbpsGB3oqOJUlWWsfQmlehMKWHrqwN-HRowmkdrvrQPbfd8b2hhhCIUfbsmV_I2m-kaVvAD4ahTFKDCl5G5fqXLi0yvw0DbmLRamDK5D3Ds--m4u5_rbIF1uwSW81ALh6MLTjfFLz5fXh7d_1F-rwRxxxkr_9HHmOm0I9mR0aQwSjeAJPyTEZbuSzge33Uy7ETTphTilLkxqlF_1_zoefMvJUnaD_iIWO11Dec0rnL2BnYJPJ1978u7AV6pfwrM8vuX4FZ7NN8ttkFniL79Xq9yppYnJy2bBQgVu3IfnBeXti6FtCUtU-OR2SprS92V7D_Pzs58lFOuRNSB3RrZbGjKBQoK-MwcrnPlJYFZWhIJicP9LoZlikThoVy1xiDDlOaZBzLG6XleiVegPbdVOHt5BoDMRJMhOcRyJOqtAUTwoalPKiUtLjBMQGI-sGUXHObXFtKbhgWG0Hq2VYbQ_rBD7d3fKnV9T4X-FjBv6uIIthdyea5S879C0rdBborSuiXkI7Ewon0VQxQy18idJP4GBjNkudh-uo6tDcrKxk-UFppqWYwHRkz1GN4yv11WUnw01gUXAs3j3me97Dcz7i5Qey2IPtdnkTPhCraXG_mw3Y71rsPxll9sQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Mechanisms+of+Chondrocyte+Proliferation+and+Differentiation&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Chen%2C+Hui&rft.au=Tan%2C+Xiao-Ning&rft.au=Hu%2C+Shi&rft.au=Liu%2C+Ren-Qin&rft.date=2021-05-28&rft.issn=2296-634X&rft.eissn=2296-634X&rft.volume=9&rft_id=info:doi/10.3389%2Ffcell.2021.664168&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fcell_2021_664168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon