Distributed Optimal and Self-Tuning Filters Based on Compressed Data for Networked Stochastic Uncertain Systems with Deception Attacks

In this study, distributed security estimation problems for networked stochastic uncertain systems subject to stochastic deception attacks are investigated. In sensor networks, the measurement data of sensor nodes may be attacked maliciously in the process of data exchange between sensors. When the...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 1; p. 335
Main Authors Ma, Yimin, Sun, Shuli
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, distributed security estimation problems for networked stochastic uncertain systems subject to stochastic deception attacks are investigated. In sensor networks, the measurement data of sensor nodes may be attacked maliciously in the process of data exchange between sensors. When the attack rates and noise variances for the stochastic deception attack signals are known, many measurement data received from neighbour nodes are compressed by a weighted measurement fusion algorithm based on the least-squares method at each sensor node. A distributed optimal filter in the linear minimum variance criterion is presented based on compressed measurement data. It has the same estimation accuracy as and lower computational cost than that based on uncompressed measurement data. When the attack rates and noise variances of the stochastic deception attack signals are unknown, a correlation function method is employed to identify them. Then, a distributed self-tuning filter is obtained by substituting the identified results into the distributed optimal filtering algorithm. The convergence of the presented algorithms is analyzed. A simulation example verifies the effectiveness of the proposed algorithms.
AbstractList In this study, distributed security estimation problems for networked stochastic uncertain systems subject to stochastic deception attacks are investigated. In sensor networks, the measurement data of sensor nodes may be attacked maliciously in the process of data exchange between sensors. When the attack rates and noise variances for the stochastic deception attack signals are known, many measurement data received from neighbour nodes are compressed by a weighted measurement fusion algorithm based on the least-squares method at each sensor node. A distributed optimal filter in the linear minimum variance criterion is presented based on compressed measurement data. It has the same estimation accuracy as and lower computational cost than that based on uncompressed measurement data. When the attack rates and noise variances of the stochastic deception attack signals are unknown, a correlation function method is employed to identify them. Then, a distributed self-tuning filter is obtained by substituting the identified results into the distributed optimal filtering algorithm. The convergence of the presented algorithms is analyzed. A simulation example verifies the effectiveness of the proposed algorithms.
In this study, distributed security estimation problems for networked stochastic uncertain systems subject to stochastic deception attacks are investigated. In sensor networks, the measurement data of sensor nodes may be attacked maliciously in the process of data exchange between sensors. When the attack rates and noise variances for the stochastic deception attack signals are known, many measurement data received from neighbour nodes are compressed by a weighted measurement fusion algorithm based on the least-squares method at each sensor node. A distributed optimal filter in the linear minimum variance criterion is presented based on compressed measurement data. It has the same estimation accuracy as and lower computational cost than that based on uncompressed measurement data. When the attack rates and noise variances of the stochastic deception attack signals are unknown, a correlation function method is employed to identify them. Then, a distributed self-tuning filter is obtained by substituting the identified results into the distributed optimal filtering algorithm. The convergence of the presented algorithms is analyzed. A simulation example verifies the effectiveness of the proposed algorithms.In this study, distributed security estimation problems for networked stochastic uncertain systems subject to stochastic deception attacks are investigated. In sensor networks, the measurement data of sensor nodes may be attacked maliciously in the process of data exchange between sensors. When the attack rates and noise variances for the stochastic deception attack signals are known, many measurement data received from neighbour nodes are compressed by a weighted measurement fusion algorithm based on the least-squares method at each sensor node. A distributed optimal filter in the linear minimum variance criterion is presented based on compressed measurement data. It has the same estimation accuracy as and lower computational cost than that based on uncompressed measurement data. When the attack rates and noise variances of the stochastic deception attack signals are unknown, a correlation function method is employed to identify them. Then, a distributed self-tuning filter is obtained by substituting the identified results into the distributed optimal filtering algorithm. The convergence of the presented algorithms is analyzed. A simulation example verifies the effectiveness of the proposed algorithms.
Audience Academic
Author Ma, Yimin
Sun, Shuli
AuthorAffiliation School of Electronic Engineering, Heilongjiang University, Harbin 150080, China
AuthorAffiliation_xml – name: School of Electronic Engineering, Heilongjiang University, Harbin 150080, China
Author_xml – sequence: 1
  givenname: Yimin
  surname: Ma
  fullname: Ma, Yimin
– sequence: 2
  givenname: Shuli
  orcidid: 0000-0001-5325-3608
  surname: Sun
  fullname: Sun, Shuli
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36616933$$D View this record in MEDLINE/PubMed
BookMark eNplks1u3CAQgK0qVfPTHvoCFVIv7WETMD-2L5W2u00bKWoOm5wRxsMuGxs2gBvlBfrcZbNJlKTigBm--WDwHBZ7zjsoio8EH1Pa4JNYUkwwpfxNcUBYySZ1WeK9Z9_7xWGMa4xLSmn9rtinQhDRUHpQ_J3bmIJtxwQdutgkO6geKdehBfRmcjk665bo1PYJQkTfVcyUd2jmh02AuF3NVVLI-IB-Q7r14TqHFsnrlYrJanTlNISkrEOLu5hgiOjWphWag4Z8VjZNU1L6Or4v3hrVR_jwMB8VV6c_Lme_JucXP89m0_OJ5rhOE8qJKRUTgnPBu4qbChsBeYgWlNEYlGgYI4YDNgQqBp2oyrxoORGi4ZQeFWc7b-fVWm5CLjfcSa-svA_4sJQq5Iv3IBUjpRLQGl0R1um2ZXWnGlJBrYWoTJdd33auzdgO0GlwKaj-hfTljrMrufR_ZFOXVDQiC748CIK_GSEmOdiooe-VAz9GWVaCbNmmyejnV-jaj8Hlp7qnSsyFYJk63lFLlQuwzvh8rs6jg8Hq3DPG5vi0YoJTVpE6J3x6XsLT3R_7IwMnO0AHH2MAI7VNavvnstn2kmC57UD51IE54-urjEfp_-w_7KHbyw
CitedBy_id crossref_primary_10_1016_j_inffus_2023_102121
crossref_primary_10_53941_ijndi_2024_100021
crossref_primary_10_3934_mbe_2023651
crossref_primary_10_1016_j_dsp_2024_104529
crossref_primary_10_1016_j_jfranklin_2023_08_033
crossref_primary_10_1080_00207721_2024_2328781
Cites_doi 10.1145/1952982.1952995
10.1016/j.isatra.2020.10.002
10.1109/ACCESS.2018.2874444
10.1109/JSYST.2021.3123617
10.1016/j.ins.2020.08.124
10.1016/j.dsp.2019.102636
10.1016/j.automatica.2018.12.027
10.1016/j.inffus.2017.03.006
10.1016/j.inffus.2016.12.003
10.1016/j.jfranklin.2021.04.014
10.1016/j.neucom.2020.10.055
10.1016/j.ejcon.2021.06.026
10.1109/ACCESS.2021.3050198
10.1049/iet-cta.2016.0803
10.1016/j.sigpro.2016.07.004
10.1109/ICCA51439.2020.9264334
10.1109/TCYB.2017.2716115
10.1137/1.9781611970777
10.1109/TCYB.2020.3015507
10.3390/s19204436
10.1016/j.jfranklin.2020.01.029
10.3390/s20226445
10.23919/ACC45564.2020.9147825
10.1016/j.sigpro.2016.02.014
10.1016/j.ins.2020.08.008
10.1016/j.neucom.2019.01.099
10.1109/TAES.2007.4285343
10.1109/TSMC.2017.2697450
10.1016/j.isatra.2021.11.033
10.1002/rnc.4709
10.1109/TFUZZ.2021.3080978
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23010335
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
MEDLINE - Academic

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_a412a6ebfc714dcbb48da917e8c667fd
PMC9823696
A746534718
36616933
10_3390_s23010335
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61573132
– fundername: Key Project of the Natural Science Foundation of Heilongjiang Province, China
  grantid: ZD2021F003
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c508t-351f2a4665565d75f70f6e6e66beafc0ea69441f5e0f1e74ed6725e0b51669533
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:26:15 EDT 2025
Thu Aug 21 18:38:11 EDT 2025
Fri Jul 11 15:48:43 EDT 2025
Fri Jul 25 20:23:03 EDT 2025
Tue Jul 01 05:45:11 EDT 2025
Wed Feb 19 02:25:21 EST 2025
Tue Jul 01 01:19:40 EDT 2025
Thu Apr 24 23:07:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords unknown attack rate
distributed self-tuning filter
identification
weighted measurement fusion
multiplicative noise
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-351f2a4665565d75f70f6e6e66beafc0ea69441f5e0f1e74ed6725e0b51669533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5325-3608
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23010335
PMID 36616933
PQID 2761205664
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_a412a6ebfc714dcbb48da917e8c667fd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9823696
proquest_miscellaneous_2761982399
proquest_journals_2761205664
gale_infotracacademiconefile_A746534718
pubmed_primary_36616933
crossref_citationtrail_10_3390_s23010335
crossref_primary_10_3390_s23010335
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221228
PublicationDateYYYYMMDD 2022-12-28
PublicationDate_xml – month: 12
  year: 2022
  text: 20221228
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Liu (ref_11) 2020; 52
Zhang (ref_18) 2021; 62
Yang (ref_6) 2019; 102
Sun (ref_9) 2020; 99
ref_35
ref_34
Chen (ref_16) 2018; 48
ref_32
Mahmoud (ref_4) 2019; 338
Liu (ref_5) 2011; 14
Sun (ref_1) 2017; 38
Liu (ref_17) 2020; 357
Xu (ref_13) 2021; 99
Dou (ref_26) 2017; 11
Sun (ref_25) 2007; 43
Tahoun (ref_21) 2022; 128
Weng (ref_8) 2021; 47
Zhao (ref_2) 2021; 423
Wan (ref_28) 2020; 98
Li (ref_10) 2021; 7
Wang (ref_36) 2010; 32
Tahoun (ref_20) 2021; 110
Hao (ref_31) 2019; 29
Duan (ref_27) 2018; 6
ref_3
Liu (ref_14) 2021; 358
Ma (ref_33) 2017; 130
Yang (ref_15) 2020; 547
ref_29
Chen (ref_12) 2019; 49
Lin (ref_22) 2021; 546
Su (ref_19) 2021; 16
Tan (ref_24) 2017; 36
ref_7
(ref_23) 2016; 127
Chang (ref_30) 2021; 30
References_xml – volume: 32
  start-page: 2057
  year: 2010
  ident: ref_36
  article-title: Weighted measurement fusion estimation algorithm with correlated noises and its global optimality
  publication-title: Syst. Eng. Electron.
– volume: 14
  start-page: 1
  year: 2011
  ident: ref_5
  article-title: False data injection attacks against state estimation in electric power grids
  publication-title: ACM Trans. Inf. Syst. Sec.
  doi: 10.1145/1952982.1952995
– volume: 110
  start-page: 1
  year: 2021
  ident: ref_20
  article-title: Cooperative control for cyber–physical multi-agent networked control systems with unknown false data-injection and replay cyber-attacks
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.10.002
– volume: 6
  start-page: 61519
  year: 2018
  ident: ref_27
  article-title: Self-tuning distributed fusion filter for multi-sensor systems subject to unknown model parameters and missing measurement rates
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2874444
– volume: 16
  start-page: 5720
  year: 2021
  ident: ref_19
  article-title: Distributed secure state estimation for cyber-physical systems against replay attacks via multisensor method
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2021.3123617
– volume: 546
  start-page: 943
  year: 2021
  ident: ref_22
  article-title: Secure state estimation for systems under mixed cyber-attacks: Security and performance analysis
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.08.124
– volume: 98
  start-page: 102636
  year: 2020
  ident: ref_28
  article-title: Fusion identification and estimation of multisensor multichannel AR signals with missing measurements and sensor biases
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2019.102636
– volume: 102
  start-page: 34
  year: 2019
  ident: ref_6
  article-title: Distributed filtering under false data injection attacks
  publication-title: Automatica
  doi: 10.1016/j.automatica.2018.12.027
– volume: 38
  start-page: 122
  year: 2017
  ident: ref_1
  article-title: Multi-sensor distributed fusion estimation with applications in networked systems: A review paper
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.03.006
– volume: 36
  start-page: 313
  year: 2017
  ident: ref_24
  article-title: Event-triggered multi-rate fusion estimation for uncertain system with stochastic nonlinearities and colored measurement noises
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.12.003
– ident: ref_35
– volume: 358
  start-page: 5136
  year: 2021
  ident: ref_14
  article-title: Optimal DoS attack scheduling for multi-sensor remote state estimation over interference channels
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2021.04.014
– volume: 423
  start-page: 318
  year: 2021
  ident: ref_2
  article-title: State estimation of CPSs with deception attacks: Stability analysis and approximate computation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.10.055
– volume: 62
  start-page: 47
  year: 2021
  ident: ref_18
  article-title: Discrimination between replay attacks and sensor faults for cyber-physical systems via event-triggered communication
  publication-title: Eur. J. Control
  doi: 10.1016/j.ejcon.2021.06.026
– volume: 99
  start-page: 10328
  year: 2021
  ident: ref_13
  article-title: Distributed robust dimensionality reduction fusion estimation under DoS attacks and uncertain covariances
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3050198
– volume: 11
  start-page: 359
  year: 2017
  ident: ref_26
  article-title: Self-tuning full-order WMF Kalman filter for multisensor descriptor systems
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2016.0803
– volume: 130
  start-page: 268
  year: 2017
  ident: ref_33
  article-title: Distributed fusion filter for networked stochastic uncertain systems with transmission delays and packet dropouts
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.07.004
– ident: ref_7
  doi: 10.1109/ICCA51439.2020.9264334
– volume: 48
  start-page: 1862
  year: 2018
  ident: ref_16
  article-title: Secure fusion estimation for bandwidth constrained cyber-physical systems under replay attacks
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2716115
– ident: ref_34
  doi: 10.1137/1.9781611970777
– volume: 47
  start-page: 2292
  year: 2021
  ident: ref_8
  article-title: Fusion estimate of FDI attack signals
  publication-title: Acta Autom. Sin.
– volume: 7
  start-page: 309
  year: 2021
  ident: ref_10
  article-title: Stochastic event-triggered distributed fusion estimation under jamming attacks
  publication-title: IEEE Trans. Signal Inf. Process. Net.
– volume: 52
  start-page: 3620
  year: 2020
  ident: ref_11
  article-title: Event-triggered distributed state estimation for cyber-physical systems under DoS attacks
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3015507
– ident: ref_29
  doi: 10.3390/s19204436
– volume: 357
  start-page: 4983
  year: 2020
  ident: ref_17
  article-title: Distributed set-membership filtering for time-varying systems under constrained measurements and replay attacks
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2020.01.029
– ident: ref_32
  doi: 10.3390/s20226445
– ident: ref_3
  doi: 10.23919/ACC45564.2020.9147825
– volume: 127
  start-page: 12
  year: 2016
  ident: ref_23
  article-title: Fusion estimation using measured outputs with random parameter matrices subject to random delays and packet dropouts
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.02.014
– volume: 547
  start-page: 539
  year: 2020
  ident: ref_15
  article-title: Detection against randomly occurring complex attacks on distributed state estimation
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.08.008
– volume: 338
  start-page: 101
  year: 2019
  ident: ref_4
  article-title: Modeling and control of cyber-physical systems subject to cyber-attacks: A Survey of recent advances and challenges
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.099
– volume: 43
  start-page: 418
  year: 2007
  ident: ref_25
  article-title: Optimal and self-tuning information fusion Kalman multi-step predictor
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2007.4285343
– volume: 49
  start-page: 455
  year: 2019
  ident: ref_12
  article-title: Distributed dimensionality reduction fusion estimation for cyber-physical systems under DoS attacks
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2017.2697450
– volume: 128
  start-page: 294
  year: 2022
  ident: ref_21
  article-title: Secure control design for nonlinear cyber–physical systems under DoS, replay, and deception cyber-attacks with multiple transmission channels
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.11.033
– volume: 29
  start-page: 5979
  year: 2019
  ident: ref_31
  article-title: Distributed fusion cubature Kalman filters for nonlinear systems
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.4709
– volume: 30
  start-page: 2325
  year: 2021
  ident: ref_30
  article-title: Fuzzy energy-to-peak filtering for continuous-time nonlinear singular system
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2021.3080978
– volume: 99
  start-page: 1
  year: 2020
  ident: ref_9
  article-title: Event-triggered distributed state estimation for multiagent systems under DoS attacks
  publication-title: IEEE Trans. Cybern.
SSID ssj0023338
Score 2.4259546
Snippet In this study, distributed security estimation problems for networked stochastic uncertain systems subject to stochastic deception attacks are investigated. In...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 335
SubjectTerms Algorithms
Analysis
Data compression
Deception
distributed self-tuning filter
identification
Measuring instruments
multiplicative noise
Network security
Noise
Safety and security measures
Sensors
unknown attack rate
weighted measurement fusion
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAQHkESmUQElyi5uHYyXHb7ariUA7tSr1ZY3usVirZis3-BX43M0k27AokLiin2E7k2GPPN87MN0J88g5qr3JICWy4VJWg0pqAM1mtuWuQGdqxZ_u81BdL9fWmutlJ9cU-YQM98DBwJ6DyAjS66E2ugndO1QHIxsDaa21i4N2XdN7WmBpNrZIsr4FHqCSj_mRNQDvPyj6n22_t05P0_7kV7-iifT_JHcWzeCaejohRzoaePhePsH0hnuzwCB6Kn3Omv-XMVRjkN9oEvtMD0AZ5hfcxvd7w2Ydc3PGP8bU8Jb0V5KqVvBX01OFBzqEDSfBVXg5e4VR01a38LTCLs1ySYPSOA3LkN5d8eivnOLrEyFnXcaj-S7FcnF-fXaRjgoXUEy7r2Is_FqC0rgjWBVNFk0WNdGmHEH2GoBuCS7HCLOZoFAZtCrpxVa41-6W-EgftqsU3QioHGZBARMhqhXWsI-EyqAAajXmjfCK-bAfe-pF9nJNg3FuyQniO7DRHifg4NX0YKDf-1uiUZ29qwCzZfQHJjh1lx_5LdhLxmefe8lqmzngYQxLok5gVy84Ms8-x-k7E0VY87LjI17YwBA8JQGqViA9TNS1P_ucCLa42Q5um5gDiRLwepGnqc0nYSDdlmQizJ2d7H7Vf097d9hTg_Erd6Lf_YxTeiccFx3TkHKd_JA66Hxt8T0irc8f9ovoFL-orRw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBMoyCAkuESNE8dJTmjLslQcyqFdqbdo_GorlaR0s3-B382M4013BUJ72sS7cjIznm_smW8Y-2A01EYKSBFs6FQWINMagTNGrUI3jhjaXWD7PFZHS_n9rDyLG26rmFa5WRPDQm17Q3vkBznG2zl6ayU_X_9KqWsUna7GFhp32T2BnoZSuurFtyngKjD-GtmECgztD1YIt0VWhM5utz4oUPX_vSBveaTdbMkt97N4xB5G3Mhno6Afszuue8IebLEJPmW_50SCS_2rnOU_cCn4iT-AzvITd-XT0zXtgPDFJR2Pr_ghei_L-47TghAIxC2fwwAcQSw_HnPD8dLJ0JsLIC5nvkT1COkDPLKcc9rD5XMXE2P4bBioYP8ZWy6-nn45SmObhdQgOhsol9_nIJUqEdzZqvRV5pXDj9IOvMkcqAZBky9d5oWrpLOqyvGLLoVSlJ36nO11fedeMi41ZIBq4SGrpat97RGdQQnQKCcaaRL2afPiWxM5yKkVxlWLsQjJqJ1klLD309DrkXjjX4MOSXrTAOLKDhf6m_M2ml4LUuSgnPamEtIarWVtAaNUVxulKm8T9pFk35JF42QMxMIEfCTixmpnFXHQkRNP2P5GPdpo6qv2VjET9m66jUZKJy_QuX49jmlqKiNO2ItRm6Y5F4iQVFMUCat29GznoXbvdJcXgQic_lI16tX_p_Wa3c-pZkNQHf4-2xtu1u4NIqlBvw3m8gfIziEj
  priority: 102
  providerName: ProQuest
Title Distributed Optimal and Self-Tuning Filters Based on Compressed Data for Networked Stochastic Uncertain Systems with Deception Attacks
URI https://www.ncbi.nlm.nih.gov/pubmed/36616933
https://www.proquest.com/docview/2761205664
https://www.proquest.com/docview/2761982399
https://pubmed.ncbi.nlm.nih.gov/PMC9823696
https://doaj.org/article/a412a6ebfc714dcbb48da917e8c667fd
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1ti9NAEB7uBeTug_hu9CyrCPolmpfNbvJBpLVXD8Eq3hX6LWw2u95BL9E2Bf0D_m5n8kaDJ4VCk2lIMrM7z-zOPAPwUmcq1txXLoKNzOWh4m6MwBmjVj9LDDG0m5rtcy7OFvzTMlruQddjs32BmxtDO-ontViv3vz6-fs9Dvh3FHFiyP52gzDa98Iw2odDdEiSGhl85v1mQhBiGNaQCg3Fj-BWiO5JJGE48Eo1ef-_U_SOjxrmT-44pNkduN0iSTZuVH8X9kxxD453-AXvw58p0eJSRyuTsy84OVzjH1SRs3Ozsu7FltZE2OyKNsw3bIL-LGdlwWiKqCnFczZVlWIIa9m8yRbHQ-dVqS8VsTuzBRpMnVDAWt5zRqu6bGraVBk2rioq4X8Ai9npxYczt2284GrEaxVl99tAcSEihHu5jKz0rDD4EZlRVntGiQRhlI2MZ30jucmFDPBHFvlCUL7qQzgoysI8BsYz5Sk0FKu8mJvYxhbxmoqUSoTxE64deN29-FS3rOTUHGOVYnRC6kp7dTnwohf90VBx3CQ0Ie31AsSeXR8o19_TdjCmivuBEiazWvo811nG41xh3GpiLYS0uQOvSPcpWR3ejFZtqQI-ErFlpWNJrHTk1h046cwj7Ww3DSTCRgSWgjvwvD-Nw5b2YlRhym0jk8RUWOzAo8aa-nvujNIBObCzwUMNzxRXlzU1OF1SJOLJf6_5FI4CKuDwqSj_BA6q9dY8Q1hVZSPYl0uJ3_Hs4wgOJ6fzr99G9RLFqB5OfwGW7ybA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VcgAOiH8MBRYEgotV_6zX9gGhlBBSWsKhidSbO17v0krFLo0jxAvwODwjM7bjJgJxq3yKd22tM7Mz3-zOfgPwUueYaOmjS2Ajd2WI0k0IOFPU6uepYYZ207B9TtR4Jj8dRocb8Ht5FobTKpc2sTHURaV5jXw7oHg7IG-t5Luz7y5XjeLd1WUJjVYt9szPHxSyzd_uDkm-r4Jg9GH6fux2VQVcTWCk5tR1G6BUKiIsU8SRjT2rDF0qN2i1Z1ClhBFsZDzrm1iaQsUB_cgjXylOxqT3XoGrMiRPzifTRx_7AC-keK9lL6JGb3tO8N73wqaS3IXPa0oD_O0AVjzgenbmirsb3YKbHU4Vg1axbsOGKe_AjRX2wrvwa8iku1wvyxTiC5meb_QAloU4MKfWnS54xUWMTng7fi52yFsWoioFG6CGsLwQQ6xREGgWkzYXnW4d1JU-RuaOFjNSxyZdQXSs6oLXjMXQdIk4YlDXTBBwD2aXIoD7sFlWpXkIQuboIamhRS-RJrGJJTSIEWKqjJ9K7cCb5R-f6Y7znEtvnGYU-7CMsl5GDrzou561RB__6rTD0us7MDd3c6M6_5p1Uz1D6QeoTG517MtC57lMCqSo2CRaqdgWDrxm2WdsQWgwGruDEPRJzMWVDWLmvGPQ4MDWUj2yzrTMs4uJ4MDzvpmMAu_0YGmqRdsnTfjYsgMPWm3qxxwSIlNpGDoQr-nZ2kett5Qnxw3xOL9SperR_4f1DK6Np5_3s_3dyd5juB7weRGfOQC2YLM-X5gnhOLq_GkzdQQcXfZc_QM-Y105
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwxFFgQCC5W_Fiv7QNCCWnUUhQq2ki9bdfrXVqp2KVxhPgD_Ch-HTN-NRGIW5VT7I21zry-2Z39BuCVzlSiua9cBBuZy0PF3QSBM2atfpYaYmg3NdvnTOzM-cej6GgDfndnYaissvOJtaPOS01r5MMA8-0Ao7XgQ9uWRexPpu_Pv7vUQYp2Wrt2Go2K7JmfPzB9W7zbnaCsXwfBdPvww47bdhhwNQKTisrYbaC4EBHimjyObOxZYfAjMqOs9owSKeIFGxnP-ibmJhdxgF-yyBeCCjPxuddgM6asaACb4-3Z_pc-3Qsx-2u4jMIw9YYLBPu-F9Z95S4jYN0o4O9wsBIP12s1V4Lf9DbcalErGzVqdgc2THEXbq5wGd6DXxOi4KXuWSZnn9ERfcMfqCJnB-bMuodLWn9h01PanF-wMcbOnJUFI3dU05fnbKIqxRBCs1lTmY6XDqpSnyhikmZzVM66eIG1HOuMVpDZxLRlOWxUVUQXcB_mVyKCBzAoysI8AsYz5SlUSqu8hJvEJhaxoYqUSoXxU64deNv98VK3DOjUiONMYiZEMpK9jBx42Q89b2g__jVoTNLrBxBTd32hvPgqW8OXivuBEiazOvZ5rrOMJ7nCHNkkWojY5g68IdlL8ic4Ga3aYxH4SsTMJUcxMeARhHBgq1MP2Tqahbw0Cwde9LfRRdC-jypMuWzGpAkdYnbgYaNN_ZxDxGciDUMH4jU9W3up9TvF6UlNQ06PFKl4_P9pPYfraKfy0-5s7wncCOjwiE-EAFswqC6W5ilCuip71toOg-OrNtc_HA5iyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Optimal+and+Self-Tuning+Filters+Based+on+Compressed+Data+for+Networked+Stochastic+Uncertain+Systems+with+Deception+Attacks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ma%2C+Yimin&rft.au=Sun%2C+Shuli&rft.date=2022-12-28&rft.eissn=1424-8220&rft.volume=23&rft.issue=1&rft_id=info:doi/10.3390%2Fs23010335&rft_id=info%3Apmid%2F36616933&rft.externalDocID=36616933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon