Distributed Optimal and Self-Tuning Filters Based on Compressed Data for Networked Stochastic Uncertain Systems with Deception Attacks
In this study, distributed security estimation problems for networked stochastic uncertain systems subject to stochastic deception attacks are investigated. In sensor networks, the measurement data of sensor nodes may be attacked maliciously in the process of data exchange between sensors. When the...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 1; p. 335 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
28.12.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, distributed security estimation problems for networked stochastic uncertain systems subject to stochastic deception attacks are investigated. In sensor networks, the measurement data of sensor nodes may be attacked maliciously in the process of data exchange between sensors. When the attack rates and noise variances for the stochastic deception attack signals are known, many measurement data received from neighbour nodes are compressed by a weighted measurement fusion algorithm based on the least-squares method at each sensor node. A distributed optimal filter in the linear minimum variance criterion is presented based on compressed measurement data. It has the same estimation accuracy as and lower computational cost than that based on uncompressed measurement data. When the attack rates and noise variances of the stochastic deception attack signals are unknown, a correlation function method is employed to identify them. Then, a distributed self-tuning filter is obtained by substituting the identified results into the distributed optimal filtering algorithm. The convergence of the presented algorithms is analyzed. A simulation example verifies the effectiveness of the proposed algorithms. |
---|---|
AbstractList | In this study, distributed security estimation problems for networked stochastic uncertain systems subject to stochastic deception attacks are investigated. In sensor networks, the measurement data of sensor nodes may be attacked maliciously in the process of data exchange between sensors. When the attack rates and noise variances for the stochastic deception attack signals are known, many measurement data received from neighbour nodes are compressed by a weighted measurement fusion algorithm based on the least-squares method at each sensor node. A distributed optimal filter in the linear minimum variance criterion is presented based on compressed measurement data. It has the same estimation accuracy as and lower computational cost than that based on uncompressed measurement data. When the attack rates and noise variances of the stochastic deception attack signals are unknown, a correlation function method is employed to identify them. Then, a distributed self-tuning filter is obtained by substituting the identified results into the distributed optimal filtering algorithm. The convergence of the presented algorithms is analyzed. A simulation example verifies the effectiveness of the proposed algorithms. In this study, distributed security estimation problems for networked stochastic uncertain systems subject to stochastic deception attacks are investigated. In sensor networks, the measurement data of sensor nodes may be attacked maliciously in the process of data exchange between sensors. When the attack rates and noise variances for the stochastic deception attack signals are known, many measurement data received from neighbour nodes are compressed by a weighted measurement fusion algorithm based on the least-squares method at each sensor node. A distributed optimal filter in the linear minimum variance criterion is presented based on compressed measurement data. It has the same estimation accuracy as and lower computational cost than that based on uncompressed measurement data. When the attack rates and noise variances of the stochastic deception attack signals are unknown, a correlation function method is employed to identify them. Then, a distributed self-tuning filter is obtained by substituting the identified results into the distributed optimal filtering algorithm. The convergence of the presented algorithms is analyzed. A simulation example verifies the effectiveness of the proposed algorithms.In this study, distributed security estimation problems for networked stochastic uncertain systems subject to stochastic deception attacks are investigated. In sensor networks, the measurement data of sensor nodes may be attacked maliciously in the process of data exchange between sensors. When the attack rates and noise variances for the stochastic deception attack signals are known, many measurement data received from neighbour nodes are compressed by a weighted measurement fusion algorithm based on the least-squares method at each sensor node. A distributed optimal filter in the linear minimum variance criterion is presented based on compressed measurement data. It has the same estimation accuracy as and lower computational cost than that based on uncompressed measurement data. When the attack rates and noise variances of the stochastic deception attack signals are unknown, a correlation function method is employed to identify them. Then, a distributed self-tuning filter is obtained by substituting the identified results into the distributed optimal filtering algorithm. The convergence of the presented algorithms is analyzed. A simulation example verifies the effectiveness of the proposed algorithms. |
Audience | Academic |
Author | Ma, Yimin Sun, Shuli |
AuthorAffiliation | School of Electronic Engineering, Heilongjiang University, Harbin 150080, China |
AuthorAffiliation_xml | – name: School of Electronic Engineering, Heilongjiang University, Harbin 150080, China |
Author_xml | – sequence: 1 givenname: Yimin surname: Ma fullname: Ma, Yimin – sequence: 2 givenname: Shuli orcidid: 0000-0001-5325-3608 surname: Sun fullname: Sun, Shuli |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36616933$$D View this record in MEDLINE/PubMed |
BookMark | eNplks1u3CAQgK0qVfPTHvoCFVIv7WETMD-2L5W2u00bKWoOm5wRxsMuGxs2gBvlBfrcZbNJlKTigBm--WDwHBZ7zjsoio8EH1Pa4JNYUkwwpfxNcUBYySZ1WeK9Z9_7xWGMa4xLSmn9rtinQhDRUHpQ_J3bmIJtxwQdutgkO6geKdehBfRmcjk665bo1PYJQkTfVcyUd2jmh02AuF3NVVLI-IB-Q7r14TqHFsnrlYrJanTlNISkrEOLu5hgiOjWphWag4Z8VjZNU1L6Or4v3hrVR_jwMB8VV6c_Lme_JucXP89m0_OJ5rhOE8qJKRUTgnPBu4qbChsBeYgWlNEYlGgYI4YDNgQqBp2oyrxoORGi4ZQeFWc7b-fVWm5CLjfcSa-svA_4sJQq5Iv3IBUjpRLQGl0R1um2ZXWnGlJBrYWoTJdd33auzdgO0GlwKaj-hfTljrMrufR_ZFOXVDQiC748CIK_GSEmOdiooe-VAz9GWVaCbNmmyejnV-jaj8Hlp7qnSsyFYJk63lFLlQuwzvh8rs6jg8Hq3DPG5vi0YoJTVpE6J3x6XsLT3R_7IwMnO0AHH2MAI7VNavvnstn2kmC57UD51IE54-urjEfp_-w_7KHbyw |
CitedBy_id | crossref_primary_10_1016_j_inffus_2023_102121 crossref_primary_10_53941_ijndi_2024_100021 crossref_primary_10_3934_mbe_2023651 crossref_primary_10_1016_j_dsp_2024_104529 crossref_primary_10_1016_j_jfranklin_2023_08_033 crossref_primary_10_1080_00207721_2024_2328781 |
Cites_doi | 10.1145/1952982.1952995 10.1016/j.isatra.2020.10.002 10.1109/ACCESS.2018.2874444 10.1109/JSYST.2021.3123617 10.1016/j.ins.2020.08.124 10.1016/j.dsp.2019.102636 10.1016/j.automatica.2018.12.027 10.1016/j.inffus.2017.03.006 10.1016/j.inffus.2016.12.003 10.1016/j.jfranklin.2021.04.014 10.1016/j.neucom.2020.10.055 10.1016/j.ejcon.2021.06.026 10.1109/ACCESS.2021.3050198 10.1049/iet-cta.2016.0803 10.1016/j.sigpro.2016.07.004 10.1109/ICCA51439.2020.9264334 10.1109/TCYB.2017.2716115 10.1137/1.9781611970777 10.1109/TCYB.2020.3015507 10.3390/s19204436 10.1016/j.jfranklin.2020.01.029 10.3390/s20226445 10.23919/ACC45564.2020.9147825 10.1016/j.sigpro.2016.02.014 10.1016/j.ins.2020.08.008 10.1016/j.neucom.2019.01.099 10.1109/TAES.2007.4285343 10.1109/TSMC.2017.2697450 10.1016/j.isatra.2021.11.033 10.1002/rnc.4709 10.1109/TFUZZ.2021.3080978 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23010335 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_a412a6ebfc714dcbb48da917e8c667fd PMC9823696 A746534718 36616933 10_3390_s23010335 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61573132 – fundername: Key Project of the Natural Science Foundation of Heilongjiang Province, China grantid: ZD2021F003 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c508t-351f2a4665565d75f70f6e6e66beafc0ea69441f5e0f1e74ed6725e0b51669533 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:26:15 EDT 2025 Thu Aug 21 18:38:11 EDT 2025 Fri Jul 11 15:48:43 EDT 2025 Fri Jul 25 20:23:03 EDT 2025 Tue Jul 01 05:45:11 EDT 2025 Wed Feb 19 02:25:21 EST 2025 Tue Jul 01 01:19:40 EDT 2025 Thu Apr 24 23:07:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | unknown attack rate distributed self-tuning filter identification weighted measurement fusion multiplicative noise |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-351f2a4665565d75f70f6e6e66beafc0ea69441f5e0f1e74ed6725e0b51669533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5325-3608 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23010335 |
PMID | 36616933 |
PQID | 2761205664 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a412a6ebfc714dcbb48da917e8c667fd pubmedcentral_primary_oai_pubmedcentral_nih_gov_9823696 proquest_miscellaneous_2761982399 proquest_journals_2761205664 gale_infotracacademiconefile_A746534718 pubmed_primary_36616933 crossref_citationtrail_10_3390_s23010335 crossref_primary_10_3390_s23010335 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221228 |
PublicationDateYYYYMMDD | 2022-12-28 |
PublicationDate_xml | – month: 12 year: 2022 text: 20221228 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Liu (ref_11) 2020; 52 Zhang (ref_18) 2021; 62 Yang (ref_6) 2019; 102 Sun (ref_9) 2020; 99 ref_35 ref_34 Chen (ref_16) 2018; 48 ref_32 Mahmoud (ref_4) 2019; 338 Liu (ref_5) 2011; 14 Sun (ref_1) 2017; 38 Liu (ref_17) 2020; 357 Xu (ref_13) 2021; 99 Dou (ref_26) 2017; 11 Sun (ref_25) 2007; 43 Tahoun (ref_21) 2022; 128 Weng (ref_8) 2021; 47 Zhao (ref_2) 2021; 423 Wan (ref_28) 2020; 98 Li (ref_10) 2021; 7 Wang (ref_36) 2010; 32 Tahoun (ref_20) 2021; 110 Hao (ref_31) 2019; 29 Duan (ref_27) 2018; 6 ref_3 Liu (ref_14) 2021; 358 Ma (ref_33) 2017; 130 Yang (ref_15) 2020; 547 ref_29 Chen (ref_12) 2019; 49 Lin (ref_22) 2021; 546 Su (ref_19) 2021; 16 Tan (ref_24) 2017; 36 ref_7 (ref_23) 2016; 127 Chang (ref_30) 2021; 30 |
References_xml | – volume: 32 start-page: 2057 year: 2010 ident: ref_36 article-title: Weighted measurement fusion estimation algorithm with correlated noises and its global optimality publication-title: Syst. Eng. Electron. – volume: 14 start-page: 1 year: 2011 ident: ref_5 article-title: False data injection attacks against state estimation in electric power grids publication-title: ACM Trans. Inf. Syst. Sec. doi: 10.1145/1952982.1952995 – volume: 110 start-page: 1 year: 2021 ident: ref_20 article-title: Cooperative control for cyber–physical multi-agent networked control systems with unknown false data-injection and replay cyber-attacks publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.10.002 – volume: 6 start-page: 61519 year: 2018 ident: ref_27 article-title: Self-tuning distributed fusion filter for multi-sensor systems subject to unknown model parameters and missing measurement rates publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2874444 – volume: 16 start-page: 5720 year: 2021 ident: ref_19 article-title: Distributed secure state estimation for cyber-physical systems against replay attacks via multisensor method publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2021.3123617 – volume: 546 start-page: 943 year: 2021 ident: ref_22 article-title: Secure state estimation for systems under mixed cyber-attacks: Security and performance analysis publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.08.124 – volume: 98 start-page: 102636 year: 2020 ident: ref_28 article-title: Fusion identification and estimation of multisensor multichannel AR signals with missing measurements and sensor biases publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2019.102636 – volume: 102 start-page: 34 year: 2019 ident: ref_6 article-title: Distributed filtering under false data injection attacks publication-title: Automatica doi: 10.1016/j.automatica.2018.12.027 – volume: 38 start-page: 122 year: 2017 ident: ref_1 article-title: Multi-sensor distributed fusion estimation with applications in networked systems: A review paper publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.03.006 – volume: 36 start-page: 313 year: 2017 ident: ref_24 article-title: Event-triggered multi-rate fusion estimation for uncertain system with stochastic nonlinearities and colored measurement noises publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.12.003 – ident: ref_35 – volume: 358 start-page: 5136 year: 2021 ident: ref_14 article-title: Optimal DoS attack scheduling for multi-sensor remote state estimation over interference channels publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2021.04.014 – volume: 423 start-page: 318 year: 2021 ident: ref_2 article-title: State estimation of CPSs with deception attacks: Stability analysis and approximate computation publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.10.055 – volume: 62 start-page: 47 year: 2021 ident: ref_18 article-title: Discrimination between replay attacks and sensor faults for cyber-physical systems via event-triggered communication publication-title: Eur. J. Control doi: 10.1016/j.ejcon.2021.06.026 – volume: 99 start-page: 10328 year: 2021 ident: ref_13 article-title: Distributed robust dimensionality reduction fusion estimation under DoS attacks and uncertain covariances publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3050198 – volume: 11 start-page: 359 year: 2017 ident: ref_26 article-title: Self-tuning full-order WMF Kalman filter for multisensor descriptor systems publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2016.0803 – volume: 130 start-page: 268 year: 2017 ident: ref_33 article-title: Distributed fusion filter for networked stochastic uncertain systems with transmission delays and packet dropouts publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.07.004 – ident: ref_7 doi: 10.1109/ICCA51439.2020.9264334 – volume: 48 start-page: 1862 year: 2018 ident: ref_16 article-title: Secure fusion estimation for bandwidth constrained cyber-physical systems under replay attacks publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2716115 – ident: ref_34 doi: 10.1137/1.9781611970777 – volume: 47 start-page: 2292 year: 2021 ident: ref_8 article-title: Fusion estimate of FDI attack signals publication-title: Acta Autom. Sin. – volume: 7 start-page: 309 year: 2021 ident: ref_10 article-title: Stochastic event-triggered distributed fusion estimation under jamming attacks publication-title: IEEE Trans. Signal Inf. Process. Net. – volume: 52 start-page: 3620 year: 2020 ident: ref_11 article-title: Event-triggered distributed state estimation for cyber-physical systems under DoS attacks publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3015507 – ident: ref_29 doi: 10.3390/s19204436 – volume: 357 start-page: 4983 year: 2020 ident: ref_17 article-title: Distributed set-membership filtering for time-varying systems under constrained measurements and replay attacks publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2020.01.029 – ident: ref_32 doi: 10.3390/s20226445 – ident: ref_3 doi: 10.23919/ACC45564.2020.9147825 – volume: 127 start-page: 12 year: 2016 ident: ref_23 article-title: Fusion estimation using measured outputs with random parameter matrices subject to random delays and packet dropouts publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.02.014 – volume: 547 start-page: 539 year: 2020 ident: ref_15 article-title: Detection against randomly occurring complex attacks on distributed state estimation publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.08.008 – volume: 338 start-page: 101 year: 2019 ident: ref_4 article-title: Modeling and control of cyber-physical systems subject to cyber-attacks: A Survey of recent advances and challenges publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.099 – volume: 43 start-page: 418 year: 2007 ident: ref_25 article-title: Optimal and self-tuning information fusion Kalman multi-step predictor publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2007.4285343 – volume: 49 start-page: 455 year: 2019 ident: ref_12 article-title: Distributed dimensionality reduction fusion estimation for cyber-physical systems under DoS attacks publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2017.2697450 – volume: 128 start-page: 294 year: 2022 ident: ref_21 article-title: Secure control design for nonlinear cyber–physical systems under DoS, replay, and deception cyber-attacks with multiple transmission channels publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.11.033 – volume: 29 start-page: 5979 year: 2019 ident: ref_31 article-title: Distributed fusion cubature Kalman filters for nonlinear systems publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.4709 – volume: 30 start-page: 2325 year: 2021 ident: ref_30 article-title: Fuzzy energy-to-peak filtering for continuous-time nonlinear singular system publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2021.3080978 – volume: 99 start-page: 1 year: 2020 ident: ref_9 article-title: Event-triggered distributed state estimation for multiagent systems under DoS attacks publication-title: IEEE Trans. Cybern. |
SSID | ssj0023338 |
Score | 2.4259546 |
Snippet | In this study, distributed security estimation problems for networked stochastic uncertain systems subject to stochastic deception attacks are investigated. In... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 335 |
SubjectTerms | Algorithms Analysis Data compression Deception distributed self-tuning filter identification Measuring instruments multiplicative noise Network security Noise Safety and security measures Sensors unknown attack rate weighted measurement fusion |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAQHkESmUQElyi5uHYyXHb7ariUA7tSr1ZY3usVirZis3-BX43M0k27AokLiin2E7k2GPPN87MN0J88g5qr3JICWy4VJWg0pqAM1mtuWuQGdqxZ_u81BdL9fWmutlJ9cU-YQM98DBwJ6DyAjS66E2ugndO1QHIxsDaa21i4N2XdN7WmBpNrZIsr4FHqCSj_mRNQDvPyj6n22_t05P0_7kV7-iifT_JHcWzeCaejohRzoaePhePsH0hnuzwCB6Kn3Omv-XMVRjkN9oEvtMD0AZ5hfcxvd7w2Ydc3PGP8bU8Jb0V5KqVvBX01OFBzqEDSfBVXg5e4VR01a38LTCLs1ySYPSOA3LkN5d8eivnOLrEyFnXcaj-S7FcnF-fXaRjgoXUEy7r2Is_FqC0rgjWBVNFk0WNdGmHEH2GoBuCS7HCLOZoFAZtCrpxVa41-6W-EgftqsU3QioHGZBARMhqhXWsI-EyqAAajXmjfCK-bAfe-pF9nJNg3FuyQniO7DRHifg4NX0YKDf-1uiUZ29qwCzZfQHJjh1lx_5LdhLxmefe8lqmzngYQxLok5gVy84Ms8-x-k7E0VY87LjI17YwBA8JQGqViA9TNS1P_ucCLa42Q5um5gDiRLwepGnqc0nYSDdlmQizJ2d7H7Vf097d9hTg_Erd6Lf_YxTeiccFx3TkHKd_JA66Hxt8T0irc8f9ovoFL-orRw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBMoyCAkuESNE8dJTmjLslQcyqFdqbdo_GorlaR0s3-B382M4013BUJ72sS7cjIznm_smW8Y-2A01EYKSBFs6FQWINMagTNGrUI3jhjaXWD7PFZHS_n9rDyLG26rmFa5WRPDQm17Q3vkBznG2zl6ayU_X_9KqWsUna7GFhp32T2BnoZSuurFtyngKjD-GtmECgztD1YIt0VWhM5utz4oUPX_vSBveaTdbMkt97N4xB5G3Mhno6Afszuue8IebLEJPmW_50SCS_2rnOU_cCn4iT-AzvITd-XT0zXtgPDFJR2Pr_ghei_L-47TghAIxC2fwwAcQSw_HnPD8dLJ0JsLIC5nvkT1COkDPLKcc9rD5XMXE2P4bBioYP8ZWy6-nn45SmObhdQgOhsol9_nIJUqEdzZqvRV5pXDj9IOvMkcqAZBky9d5oWrpLOqyvGLLoVSlJ36nO11fedeMi41ZIBq4SGrpat97RGdQQnQKCcaaRL2afPiWxM5yKkVxlWLsQjJqJ1klLD309DrkXjjX4MOSXrTAOLKDhf6m_M2ml4LUuSgnPamEtIarWVtAaNUVxulKm8T9pFk35JF42QMxMIEfCTixmpnFXHQkRNP2P5GPdpo6qv2VjET9m66jUZKJy_QuX49jmlqKiNO2ItRm6Y5F4iQVFMUCat29GznoXbvdJcXgQic_lI16tX_p_Wa3c-pZkNQHf4-2xtu1u4NIqlBvw3m8gfIziEj priority: 102 providerName: ProQuest |
Title | Distributed Optimal and Self-Tuning Filters Based on Compressed Data for Networked Stochastic Uncertain Systems with Deception Attacks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36616933 https://www.proquest.com/docview/2761205664 https://www.proquest.com/docview/2761982399 https://pubmed.ncbi.nlm.nih.gov/PMC9823696 https://doaj.org/article/a412a6ebfc714dcbb48da917e8c667fd |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1ti9NAEB7uBeTug_hu9CyrCPolmpfNbvJBpLVXD8Eq3hX6LWw2u95BL9E2Bf0D_m5n8kaDJ4VCk2lIMrM7z-zOPAPwUmcq1txXLoKNzOWh4m6MwBmjVj9LDDG0m5rtcy7OFvzTMlruQddjs32BmxtDO-ontViv3vz6-fs9Dvh3FHFiyP52gzDa98Iw2odDdEiSGhl85v1mQhBiGNaQCg3Fj-BWiO5JJGE48Eo1ef-_U_SOjxrmT-44pNkduN0iSTZuVH8X9kxxD453-AXvw58p0eJSRyuTsy84OVzjH1SRs3Ozsu7FltZE2OyKNsw3bIL-LGdlwWiKqCnFczZVlWIIa9m8yRbHQ-dVqS8VsTuzBRpMnVDAWt5zRqu6bGraVBk2rioq4X8Ai9npxYczt2284GrEaxVl99tAcSEihHu5jKz0rDD4EZlRVntGiQRhlI2MZ30jucmFDPBHFvlCUL7qQzgoysI8BsYz5Sk0FKu8mJvYxhbxmoqUSoTxE64deN29-FS3rOTUHGOVYnRC6kp7dTnwohf90VBx3CQ0Ie31AsSeXR8o19_TdjCmivuBEiazWvo811nG41xh3GpiLYS0uQOvSPcpWR3ejFZtqQI-ErFlpWNJrHTk1h046cwj7Ww3DSTCRgSWgjvwvD-Nw5b2YlRhym0jk8RUWOzAo8aa-nvujNIBObCzwUMNzxRXlzU1OF1SJOLJf6_5FI4CKuDwqSj_BA6q9dY8Q1hVZSPYl0uJ3_Hs4wgOJ6fzr99G9RLFqB5OfwGW7ybA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VcgAOiH8MBRYEgotV_6zX9gGhlBBSWsKhidSbO17v0krFLo0jxAvwODwjM7bjJgJxq3yKd22tM7Mz3-zOfgPwUueYaOmjS2Ajd2WI0k0IOFPU6uepYYZ207B9TtR4Jj8dRocb8Ht5FobTKpc2sTHURaV5jXw7oHg7IG-t5Luz7y5XjeLd1WUJjVYt9szPHxSyzd_uDkm-r4Jg9GH6fux2VQVcTWCk5tR1G6BUKiIsU8SRjT2rDF0qN2i1Z1ClhBFsZDzrm1iaQsUB_cgjXylOxqT3XoGrMiRPzifTRx_7AC-keK9lL6JGb3tO8N73wqaS3IXPa0oD_O0AVjzgenbmirsb3YKbHU4Vg1axbsOGKe_AjRX2wrvwa8iku1wvyxTiC5meb_QAloU4MKfWnS54xUWMTng7fi52yFsWoioFG6CGsLwQQ6xREGgWkzYXnW4d1JU-RuaOFjNSxyZdQXSs6oLXjMXQdIk4YlDXTBBwD2aXIoD7sFlWpXkIQuboIamhRS-RJrGJJTSIEWKqjJ9K7cCb5R-f6Y7znEtvnGYU-7CMsl5GDrzou561RB__6rTD0us7MDd3c6M6_5p1Uz1D6QeoTG517MtC57lMCqSo2CRaqdgWDrxm2WdsQWgwGruDEPRJzMWVDWLmvGPQ4MDWUj2yzrTMs4uJ4MDzvpmMAu_0YGmqRdsnTfjYsgMPWm3qxxwSIlNpGDoQr-nZ2kett5Qnxw3xOL9SperR_4f1DK6Np5_3s_3dyd5juB7weRGfOQC2YLM-X5gnhOLq_GkzdQQcXfZc_QM-Y105 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwxFFgQCC5W_Fiv7QNCCWnUUhQq2ki9bdfrXVqp2KVxhPgD_Ch-HTN-NRGIW5VT7I21zry-2Z39BuCVzlSiua9cBBuZy0PF3QSBM2atfpYaYmg3NdvnTOzM-cej6GgDfndnYaissvOJtaPOS01r5MMA8-0Ao7XgQ9uWRexPpu_Pv7vUQYp2Wrt2Go2K7JmfPzB9W7zbnaCsXwfBdPvww47bdhhwNQKTisrYbaC4EBHimjyObOxZYfAjMqOs9owSKeIFGxnP-ibmJhdxgF-yyBeCCjPxuddgM6asaACb4-3Z_pc-3Qsx-2u4jMIw9YYLBPu-F9Z95S4jYN0o4O9wsBIP12s1V4Lf9DbcalErGzVqdgc2THEXbq5wGd6DXxOi4KXuWSZnn9ERfcMfqCJnB-bMuodLWn9h01PanF-wMcbOnJUFI3dU05fnbKIqxRBCs1lTmY6XDqpSnyhikmZzVM66eIG1HOuMVpDZxLRlOWxUVUQXcB_mVyKCBzAoysI8AsYz5SlUSqu8hJvEJhaxoYqUSoXxU64deNv98VK3DOjUiONMYiZEMpK9jBx42Q89b2g__jVoTNLrBxBTd32hvPgqW8OXivuBEiazOvZ5rrOMJ7nCHNkkWojY5g68IdlL8ic4Ga3aYxH4SsTMJUcxMeARhHBgq1MP2Tqahbw0Cwde9LfRRdC-jypMuWzGpAkdYnbgYaNN_ZxDxGciDUMH4jU9W3up9TvF6UlNQ06PFKl4_P9pPYfraKfy0-5s7wncCOjwiE-EAFswqC6W5ilCuip71toOg-OrNtc_HA5iyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Optimal+and+Self-Tuning+Filters+Based+on+Compressed+Data+for+Networked+Stochastic+Uncertain+Systems+with+Deception+Attacks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ma%2C+Yimin&rft.au=Sun%2C+Shuli&rft.date=2022-12-28&rft.eissn=1424-8220&rft.volume=23&rft.issue=1&rft_id=info:doi/10.3390%2Fs23010335&rft_id=info%3Apmid%2F36616933&rft.externalDocID=36616933 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |