Distributed Optimal and Self-Tuning Filters Based on Compressed Data for Networked Stochastic Uncertain Systems with Deception Attacks

In this study, distributed security estimation problems for networked stochastic uncertain systems subject to stochastic deception attacks are investigated. In sensor networks, the measurement data of sensor nodes may be attacked maliciously in the process of data exchange between sensors. When the...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 1; p. 335
Main Authors Ma, Yimin, Sun, Shuli
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, distributed security estimation problems for networked stochastic uncertain systems subject to stochastic deception attacks are investigated. In sensor networks, the measurement data of sensor nodes may be attacked maliciously in the process of data exchange between sensors. When the attack rates and noise variances for the stochastic deception attack signals are known, many measurement data received from neighbour nodes are compressed by a weighted measurement fusion algorithm based on the least-squares method at each sensor node. A distributed optimal filter in the linear minimum variance criterion is presented based on compressed measurement data. It has the same estimation accuracy as and lower computational cost than that based on uncompressed measurement data. When the attack rates and noise variances of the stochastic deception attack signals are unknown, a correlation function method is employed to identify them. Then, a distributed self-tuning filter is obtained by substituting the identified results into the distributed optimal filtering algorithm. The convergence of the presented algorithms is analyzed. A simulation example verifies the effectiveness of the proposed algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s23010335