Role of papillary muscle in the generation and maintenance of reentry during ventricular tachycardia and fibrillation in isolated swine right ventricle

The role of papillary muscle (PM) in the generation and maintenance of reentry is unclear. Computerized mapping (477 bipolar electrodes, 1.6-mm resolution) was performed in fibrillating right ventricles (RVs) of swine in vitro. During ventricular fibrillation (VF), reentrant wave fronts often transi...

Full description

Saved in:
Bibliographic Details
Published inCirculation (New York, N.Y.) Vol. 100; no. 13; pp. 1450 - 1459
Main Authors KIM, Y.-H, XIE, F, ZHILIN QU, GARFINKEL, A, WEISS, J. N, KARAGUEUZIAN, H. S, CHEN, P.-S, YASHIMA, M, WU, T.-J, VALDERRABANO, M, LEE, M.-H, OHARA, T, VOROSHILOVSKY, O, DOSHI, R. N, FISHBEIN, M. C
Format Journal Article
LanguageEnglish
Published Hagerstown, MD Lippincott Williams & Wilkins 28.09.1999
American Heart Association, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The role of papillary muscle (PM) in the generation and maintenance of reentry is unclear. Computerized mapping (477 bipolar electrodes, 1.6-mm resolution) was performed in fibrillating right ventricles (RVs) of swine in vitro. During ventricular fibrillation (VF), reentrant wave fronts often transiently anchored to the PM. Tissue mass reduction was then performed in 10 RVs until VF converted to ventricular tachycardia (VT). In an additional 6 RVs, procainamide infusion converted VF to VT. Maps showed that 77% (34 of 44) of all VT episodes were associated with a single reentrant wave front anchored to the PM. Purkinje fiber potentials preceded the local myocardial activation, and these potentials were recorded mostly around the PM. When PM was trimmed to the level of endocardium (n = 4), sustained VT was no longer inducible. Transmembrane potential recordings (n = 5) at the PM revealed full action potential during pacing, without evidence of ischemia. Computer simulation studies confirmed the role of PM as a spiral wave anchoring site that stabilized wave conduction. We conclude that PM is important in the generation and maintenance of reentry during VT and VF.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0009-7322
1524-4539
DOI:10.1161/01.cir.100.13.1450