The human type I keratin gene family: Characterization of new hair follicle specific members and evaluation of the chromosome 17q21.2 gene domain

In general concurrence with recent studies, bioinformatic analysis of the chromosome 17q21.2 DNA sequence found in the EBI/Genebank database shows the presence of 27 type I keratin genes and five keratin pseudogenes present on 8 contiguous Bacterial Artificial Chromosome (BAC) sequences. This consti...

Full description

Saved in:
Bibliographic Details
Published inDifferentiation (London) Vol. 72; no. 9; pp. 527 - 540
Main Authors Rogers, Michael A., Winter, Hermelita, Langbein, Lutz, Bleiler, Raphael, Schweizer, Jürgen
Format Journal Article
LanguageEnglish
Published Oxford, UK Elsevier B.V 01.12.2004
Blackwell Publishing
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In general concurrence with recent studies, bioinformatic analysis of the chromosome 17q21.2 DNA sequence found in the EBI/Genebank database shows the presence of 27 type I keratin genes and five keratin pseudogenes present on 8 contiguous Bacterial Artificial Chromosome (BAC) sequences. This constitutes the 970 kb type I keratin gene domain. Inserted into this domain is a 350 kb region harboring 32 previously characterized keratin-associated protein genes. Of the 27 keratin genes found in this region, six have not been characterized in detail. This study reports the isolation of cDNA sequences for these keratin genes, termed K25irs1-K25irs4, Ka35, and Ka36, as well as cDNA sequences for the previously reported hair keratins hHa3-I, hHa7, and hHa8. RT-PCR analysis of 14 epithelial tissues using primers for the six novel keratins, as well as for keratins 23 and 24, shows that the six novel keratins appear to be hair follicle associated. Previous expression data, coupled with evolutionary analysis studies point to K25irs1–K25irs4 probably being inner root sheath specific keratins. Ka35 and Ka36 are, based on their exon–intron structure and expression characteristics, hair keratins. In contrast, K23 and K24 appear to be epithelial keratins associated with simple/glandular or stratified, non-cornified epithelia, respectively. A literature analysis coupled with the data presented here confirms that all of the 27 keratin genes found on this domain have been characterized at the transcriptional level. Together with K18, a type I keratin gene found on the type II keratin domain, this seems to be the entire complement of functional type I keratins in humans.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0301-4681
1432-0436
DOI:10.1111/j.1432-0436.2004.07209006.x