Shortcut-to-Adiabaticity-Like Techniques for Parameter Estimation in Quantum Metrology
Quantum metrology makes use of quantum mechanics to improve precision measurements and measurement sensitivities. It is usually formulated for time-independent Hamiltonians, but time-dependent Hamiltonians may offer advantages, such as a T4 time dependence of the Fisher information which cannot be r...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 22; no. 11; p. 1251 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
03.11.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Quantum metrology makes use of quantum mechanics to improve precision measurements and measurement sensitivities. It is usually formulated for time-independent Hamiltonians, but time-dependent Hamiltonians may offer advantages, such as a T4 time dependence of the Fisher information which cannot be reached with a time-independent Hamiltonian. In
(Nature Communications 8, 2017), Shengshi Pang and Andrew N. Jordan put forward a Shortcut-to-adiabaticity (STA)-like method, specifically an approach formally similar to the "counterdiabatic approach", adding a control term to the original Hamiltonian to reach the upper bound of the Fisher information. We revisit this work from the point of view of STA to set the relations and differences between STA-like methods in metrology and ordinary STA. This analysis paves the way for the application of other STA-like techniques in parameter estimation. In particular we explore the use of physical unitary transformations to propose alternative time-dependent Hamiltonians which may be easier to implement in the laboratory. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e22111251 |