Model-Free Dual Heuristic Dynamic Programming

Model-based dual heuristic dynamic programming (MB-DHP) is a popular approach in approximating optimal solutions in control problems. Yet, it usually requires offline training for the model network, and thus resulting in extra computational cost. In this brief, we propose a model-free DHP (MF-DHP) d...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 26; no. 8; pp. 1834 - 1839
Main Authors Zhen Ni, Haibo He, Xiangnan Zhong, Prokhorov, Danil V.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Model-based dual heuristic dynamic programming (MB-DHP) is a popular approach in approximating optimal solutions in control problems. Yet, it usually requires offline training for the model network, and thus resulting in extra computational cost. In this brief, we propose a model-free DHP (MF-DHP) design based on finite-difference technique. In particular, we adopt multilayer perceptron with one hidden layer for both the action and the critic networks design, and use delayed objective functions to train both the action and the critic networks online over time. We test both the MF-DHP and MB-DHP approaches with a discrete time example and a continuous time example under the same parameter settings. Our simulation results demonstrate that the MF-DHP approach can obtain a control performance competitive with that of the traditional MB-DHP approach while requiring less computational resources.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2015.2424971