The efficacy and potential mechanism of cnidium lactone to inhibit osteoclast differentiation

Cnidium lactone is effective in the maintenance of bone mass in various osteoporosis models; however, the precise molecular mechanisms are not understood. In this study, we investigated the effects and underlying mechanisms of action of cnidium lactone on receptor activator of NF-κB ligand (RANKL)-i...

Full description

Saved in:
Bibliographic Details
Published inArtificial cells, nanomedicine, and biotechnology Vol. 47; no. 1; pp. 3087 - 3093
Main Authors Liang, Jun-Yang, Wu, Wen-Liang, Chen, Yun-Xia, Liu, Haichun
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 01.12.2019
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cnidium lactone is effective in the maintenance of bone mass in various osteoporosis models; however, the precise molecular mechanisms are not understood. In this study, we investigated the effects and underlying mechanisms of action of cnidium lactone on receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis. Cnidium lactone dose-dependently inhibited osteoclast differentiation and formation, decreased the bone-resorbing activity of osteoclasts, and downregulated the expression of osteoclast differentiation marker genes. Cnidium lactone treatment considerably reduced RANKL-induced p38 MAPK and PI3K-Akt signal activity in RAW264.7 cells. The cnidium lactone-induced osteoclastogenesis was significantly attenuated by inhibition of p38 and PI3K through pretreatment with SB203580 and LY294002, respectively. Furthermore, cnidium lactone inhibited the expression of c-Fos and NFATc-1 with dose-dependently and enhanced by SB203580 and LY294002. In conclusion, cnidium lactone inhibits osteoclast differentiation through p38 MAPK and PI3K-Akt signalling pathway/c-Fos/NFATc1 signalling pathway.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2169-1401
2169-141X
DOI:10.1080/21691401.2019.1637881