Preparation, in vitro release and antibacterial activity evaluation of rifampicin and moxifloxacin-loaded poly(D,L-lactide-co-glycolide) microspheres

Osteomyelitis is difficult to treat because infective bone is poorly accessible for intravenously administering antibiotics and biofilm formation increases bacterial resistance. In this study, microspheres prepared using poly(lactide-co-glycolide) (PLGA) and embedded with moxifloxacin (MOX-PLGA micr...

Full description

Saved in:
Bibliographic Details
Published inArtificial cells, nanomedicine, and biotechnology Vol. 47; no. 1; pp. 790 - 798
Main Authors Qiao, ZeWen, Yuan, Zhi, Zhang, Wenping, Wei, Daihao, Hu, Ningmin
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 01.12.2019
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Osteomyelitis is difficult to treat because infective bone is poorly accessible for intravenously administering antibiotics and biofilm formation increases bacterial resistance. In this study, microspheres prepared using poly(lactide-co-glycolide) (PLGA) and embedded with moxifloxacin (MOX-PLGA microspheres) and rifampicin/moxifloxacin (RIF/MOX-PLGA microspheres) using the water-in-oil-in-water double emulsion solvent evaporation technique were used for local delivery. Shape of MOX-PLGA microspheres and RIF/MOX-PLGA microspheres were spherical, mean particle size of them were 20.52 μm and 16.62 μm, respectively. Encapsulation efficiency of the MOX-PLGA microspheres was 17.35% ± 2.42%. However, the encapsulation efficiency for MOX and RIF in RIF/MOX-PLGA microspheres was 33.25% ± 7.51% and 49.0% ± 11.25%, respectively. Moxifloxacin and rifampicin were released slowly from microspheres. Both microspheres can efficiently release antibiotics in vitro. Antibacterial and bacterial biofilm-inhibition properties of the released solution were investigated from RIF/MOX-PLGA, MOX-PLGA, and blank PLGA microspheres at varying time points in vitro. RIF/MOX-PLGA microspheres demonstrated the strongest antibacterial activity and bacterial biofilm-inhibition property than the other two microspheres (p < .05). This study suggests that the novel RIF/MOX-PLGA microspheres can be used as a promising carrier for osteomyelitis treatment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2169-1401
2169-141X
DOI:10.1080/21691401.2019.1581792