Steam activation of waste biomass: highly microporous carbon, optimization of bisphenol A, and diuron adsorption by response surface methodology

Highly microporous carbons were prepared from argan nut shell (ANS) using steam activation method. The carbons prepared (ANS@H2O-30, ANS@H2O-90, and ANS@H2O-120) were characterized using X-ray diffraction, scanning electron microscopy, Fourier-transform infrared, nitrogen adsorption, total X-ray flu...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 25; no. 35; pp. 35657 - 35671
Main Authors Zbair, Mohamed, Ainassaari, Kaisu, El Assal, Zouhair, Ojala, Satu, El Ouahedy, Nadia, Keiski, Riitta L., Bensitel, Mohammed, Brahmi, Rachid
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Highly microporous carbons were prepared from argan nut shell (ANS) using steam activation method. The carbons prepared (ANS@H2O-30, ANS@H2O-90, and ANS@H2O-120) were characterized using X-ray diffraction, scanning electron microscopy, Fourier-transform infrared, nitrogen adsorption, total X-ray fluorescence, and temperature-programmed desorption (TPD). The ANS@H2O-120 was found to have a high surface area of 2853 m 2 /g. The adsorption of bisphenol A and diuron on ANS@H2O-120 was investigated. The isotherm data were fitted using Langmuir and Freundlich models. Langmuir isotherm model presented the best fit to the experimental data suggesting micropore filling of ANS@H2O-120. The ANS@H2O-120 adsorbent demonstrated high monolayer adsorption capacity of 1408 and 1087 mg/g for bisphenol A and diuron, respectively. The efficiency of the adsorption was linked to the porous structure and to the availability of the surface adsorption sites on ANS@H2O-120. Response surface method was used to optimize the removal efficiency of bisphenol A and diuron on ANS@H2O-120 from aqueous solution. Graphical abstract ᅟ
Bibliography:Responsible editor: Tito Roberto Cadaval Jr
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-018-3455-3