Endogenous aggregates of amyloidogenic cystatin C variant are removed by THP-1 cells in vitro and induce differentiation and a proinflammatory response
Abstract A mutation in the human cystatin C gene leads to familial cerebral amyloid angiopathy. This disease is known as “hereditary cerebral hemorrhage with amyloidosis-Icelandic type” or “hereditary cystatin C amyloid angiopathy.” The mutant cystatin C protein forms aggregates and amyloid, within...
Saved in:
Published in | Neurobiology of aging Vol. 34; no. 5; pp. 1389 - 1396 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract A mutation in the human cystatin C gene leads to familial cerebral amyloid angiopathy. This disease is known as “hereditary cerebral hemorrhage with amyloidosis-Icelandic type” or “hereditary cystatin C amyloid angiopathy.” The mutant cystatin C protein forms aggregates and amyloid, within the central nervous system almost exclusively in connection with the vascular system. It was not known whether immune cells could remove mutant cystatin C protein aggregates. Ex vivo mutant cystatin C protein aggregates, both in solution and dried onto a glass surface, induced adhesion to the substrate, differentiated the THP-1 monocyte cell line and led to a proinflammatory response. Aggregates were also taken up by both THP-1 cells and THP-1 derived macrophages. These are the same responses induced by other amyloidogenic protein species, such as amyloid β protein and amylin, supporting the model of all amyloidogenic proteins being toxic due to common structural motifs. Proinflammatory response induced by the ex vivo mutant cystatin C protein aggregates suggests that vascular inflammation plays an important role in hereditary cerebral hemorrhage with amyloidosis-Icelandic type. Ex vivo protein aggregates of cystatin C might better model cellular behavior than in vitro-generated aggregates or supplement in vitro material. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0197-4580 1558-1497 |
DOI: | 10.1016/j.neurobiolaging.2012.11.012 |