Encapsulated Arrays of Self-Assembled Microtissues: An Alternative to Spherical Microcapsules
Micro-encapsulation and immuno-isolation of allogenic and xenogenic tissues and cells is a promising method for the treatment of a variety of metabolic disorders. Many years have been spent optimizing spherical microcapsules, yet micro-encapsulation has not achieved its full clinical potential. As a...
Saved in:
Published in | Tissue engineering. Part A Vol. 15; no. 2; pp. 387 - 395 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Mary Ann Liebert, Inc
01.02.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Micro-encapsulation and immuno-isolation of allogenic and xenogenic tissues and cells is a promising method for the treatment of a variety of metabolic disorders. Many years have been spent optimizing spherical microcapsules, yet micro-encapsulation has not achieved its full clinical potential. As an alternative to spherical microcapsules, this study presents an alginate-encapsulated array of self-assembled three-dimensional (3D) microtissues. Monodispersed HepG2 cells were seeded onto a micro-molded agarose gel. Cells settled to the bottom of the mold recesses and self-assembled 3D microtissues (
n
= 822) within 24 h. This array of densely packed microtissues was encapsulated
in situ
using alginate. When separated from the agarose micro-mold, the encapsulated array had HepG2 microtissues in close proximity to its surface. This surface could be further modified by a simple dipping process. Microtissue size, viability, and albumin secretion were all controllable by the number of cells seeded onto the original agarose micro-mold, and microtissue shape and spacing were controllable by the design of the micro-mold. This approach to encapsulation and the use of self-assembled/self-packing 3D microtissues offers new design possibilities that may help to address certain limitations of conventional microcapsules. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1937-3341 1937-335X |
DOI: | 10.1089/ten.tea.2008.0107 |