Resolving Cell Fate Decisions during Somatic Cell Reprogramming by Single-Cell RNA-Seq
Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs), which is a highly heterogeneous process. Here we report the cell fate continuum during somatic cell reprogramming at single-cell resolution. We first develop SOT to analyze cell fate continuum from Oct4/Sox2/Klf4- or OSK-...
Saved in:
Published in | Molecular cell Vol. 73; no. 4; pp. 815 - 829.e7 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
21.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs), which is a highly heterogeneous process. Here we report the cell fate continuum during somatic cell reprogramming at single-cell resolution. We first develop SOT to analyze cell fate continuum from Oct4/Sox2/Klf4- or OSK-mediated reprogramming and show that cells bifurcate into two categories, reprogramming potential (RP) or non-reprogramming (NR). We further show that Klf4 contributes to Cd34+/Fxyd5+/Psca+ keratinocyte-like NR fate and that IFN-γ impedes the final transition to chimera-competent pluripotency along the RP cells. We analyze more than 150,000 single cells from both OSK and chemical reprograming and identify additional NR/RP bifurcation points. Our work reveals a generic bifurcation model for cell fate decisions during somatic cell reprogramming that may be applicable to other systems and inspire further improvements for reprogramming.
[Display omitted]
•Cell fate continuum generated by somatic reprogramming•Single-cell Orientation Tracing (SOT) for fate trajectory detection•Two non-reprogramming trajectories regulated by Klf4 and IFN-γ•A generic bifurcation model for cell fate decisions
Guo et al. report the cell fate continuum during induced pluripotent stem cell (iPSC) reprogramming at single-cell resolution. By developing SOT as a new analytic tool, they identify several previously unknown bifurcation points along the reprogramming path and propose a generic bifurcation model for cell fate decisions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1097-2765 1097-4164 1097-4164 |
DOI: | 10.1016/j.molcel.2019.01.042 |