Novel Adhesion Technique Using Metallic or Non-Metallic Hydrous Oxide of Metal Complexes Involving Magnetic Compound Fluid Rubber under Electrolytic Polymerization and Magnetic Field for Producing Sensors

As per sequential studies on new types of soft rubber for the artificial skin of robots, smart sensors, etc., we have proposed and investigated hybrid skin (H-Skin) and haptic sensors by using magnetic compound fluid (MCF), compounding natural rubber latex (NR-latex), and applying electric and magne...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 19; no. 3; p. 689
Main Authors Shimada, Kunio, Kikura, Hiroshige, Takahashi, Hideharu, Ikeda, Ryo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 08.02.2019
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As per sequential studies on new types of soft rubber for the artificial skin of robots, smart sensors, etc., we have proposed and investigated hybrid skin (H-Skin) and haptic sensors by using magnetic compound fluid (MCF), compounding natural rubber latex (NR-latex), and applying electric and magnetic fields. Through electrolytic polymerization, the MCF rubber is solidified. The MCF rubber has hybrid sensing functions and photovoltaic effects, and electric charge as battery. In case of the production of soft rubber sensors, however, the problem of adhesion between metal electrodes and rubber is very important. In the present study, we propose a novel adhesive technique for bonding the metal electrodes and MCF rubber by using metallic or non-metallic hydrous oxide, which is a metal complex, via electrolytic polymerization. The anionic radical hydrate reacts with the isoprene molecules of NR-latex or chloroprene rubber latex (CR-latex) such that they are cross-linked and the MCF rubber with the hydrate is solidified, which can be represented via a chemical reaction equation. By means of this adhesive technique, we presented five cases of sensors fabricated using metal electrodes and rubbers. This technique is applicable for novel cohesion between rubber and metal.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s19030689