HRDepthNet: Depth Image-Based Marker-Less Tracking of Body Joints

With approaches for the detection of joint positions in color images such as HRNet and OpenPose being available, consideration of corresponding approaches for depth images is limited even though depth images have several advantages over color images like robustness to light variation or color- and t...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 4; p. 1356
Main Authors Büker, Linda Christin, Zuber, Finnja, Hein, Andreas, Fudickar, Sebastian
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 14.02.2021
MDPI AG
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s21041356

Cover

Loading…
Abstract With approaches for the detection of joint positions in color images such as HRNet and OpenPose being available, consideration of corresponding approaches for depth images is limited even though depth images have several advantages over color images like robustness to light variation or color- and texture invariance. Correspondingly, we introduce High- Resolution Depth Net (HRDepthNet)—a machine learning driven approach to detect human joints (body, head, and upper and lower extremities) in purely depth images. HRDepthNet retrains the original HRNet for depth images. Therefore, a dataset is created holding depth (and RGB) images recorded with subjects conducting the timed up and go test—an established geriatric assessment. The images were manually annotated RGB images. The training and evaluation were conducted with this dataset. For accuracy evaluation, detection of body joints was evaluated via COCO’s evaluation metrics and indicated that the resulting depth image-based model achieved better results than the HRNet trained and applied on corresponding RGB images. An additional evaluation of the position errors showed a median deviation of 1.619 cm (x-axis), 2.342 cm (y-axis) and 2.4 cm (z-axis).
AbstractList With approaches for the detection of joint positions in color images such as HRNet and OpenPose being available, consideration of corresponding approaches for depth images is limited even though depth images have several advantages over color images like robustness to light variation or color- and texture invariance. Correspondingly, we introduce High- Resolution Depth Net (HRDepthNet)—a machine learning driven approach to detect human joints (body, head, and upper and lower extremities) in purely depth images. HRDepthNet retrains the original HRNet for depth images. Therefore, a dataset is created holding depth (and RGB) images recorded with subjects conducting the timed up and go test—an established geriatric assessment. The images were manually annotated RGB images. The training and evaluation were conducted with this dataset. For accuracy evaluation, detection of body joints was evaluated via COCO’s evaluation metrics and indicated that the resulting depth image-based model achieved better results than the HRNet trained and applied on corresponding RGB images. An additional evaluation of the position errors showed a median deviation of 1.619 cm (x-axis), 2.342 cm (y-axis) and 2.4 cm (z-axis).
With approaches for the detection of joint positions in color images such as HRNet and OpenPose being available, consideration of corresponding approaches for depth images is limited even though depth images have several advantages over color images like robustness to light variation or color- and texture invariance. Correspondingly, we introduce High- Resolution Depth Net (HRDepthNet)—a machine learning driven approach to detect human joints (body, head, and upper and lower extremities) in purely depth images. HRDepthNet retrains the original HRNet for depth images. Therefore, a dataset is created holding depth (and RGB) images recorded with subjects conducting the timed up and go test—an established geriatric assessment. The images were manually annotated RGB images. The training and evaluation were conducted with this dataset. For accuracy evaluation, detection of body joints was evaluated via COCO’s evaluation metrics and indicated that the resulting depth image-based model achieved better results than the HRNet trained and applied on corresponding RGB images. An additional evaluation of the position errors showed a median deviation of 1.619 cm ( x -axis), 2.342 cm ( y -axis) and 2.4 cm ( z -axis).
With approaches for the detection of joint positions in color images such as HRNet and OpenPose being available, consideration of corresponding approaches for depth images is limited even though depth images have several advantages over color images like robustness to light variation or color- and texture invariance. Correspondingly, we introduce High- Resolution Depth Net (HRDepthNet)-a machine learning driven approach to detect human joints (body, head, and upper and lower extremities) in purely depth images. HRDepthNet retrains the original HRNet for depth images. Therefore, a dataset is created holding depth (and RGB) images recorded with subjects conducting the timed up and go test-an established geriatric assessment. The images were manually annotated RGB images. The training and evaluation were conducted with this dataset. For accuracy evaluation, detection of body joints was evaluated via COCO's evaluation metrics and indicated that the resulting depth image-based model achieved better results than the HRNet trained and applied on corresponding RGB images. An additional evaluation of the position errors showed a median deviation of 1.619 cm ( -axis), 2.342 cm ( -axis) and 2.4 cm ( -axis).
With approaches for the detection of joint positions in color images such as HRNet and OpenPose being available, consideration of corresponding approaches for depth images is limited even though depth images have several advantages over color images like robustness to light variation or color- and texture invariance. Correspondingly, we introduce High- Resolution Depth Net (HRDepthNet)-a machine learning driven approach to detect human joints (body, head, and upper and lower extremities) in purely depth images. HRDepthNet retrains the original HRNet for depth images. Therefore, a dataset is created holding depth (and RGB) images recorded with subjects conducting the timed up and go test-an established geriatric assessment. The images were manually annotated RGB images. The training and evaluation were conducted with this dataset. For accuracy evaluation, detection of body joints was evaluated via COCO's evaluation metrics and indicated that the resulting depth image-based model achieved better results than the HRNet trained and applied on corresponding RGB images. An additional evaluation of the position errors showed a median deviation of 1.619 cm (x-axis), 2.342 cm (y-axis) and 2.4 cm (z-axis).With approaches for the detection of joint positions in color images such as HRNet and OpenPose being available, consideration of corresponding approaches for depth images is limited even though depth images have several advantages over color images like robustness to light variation or color- and texture invariance. Correspondingly, we introduce High- Resolution Depth Net (HRDepthNet)-a machine learning driven approach to detect human joints (body, head, and upper and lower extremities) in purely depth images. HRDepthNet retrains the original HRNet for depth images. Therefore, a dataset is created holding depth (and RGB) images recorded with subjects conducting the timed up and go test-an established geriatric assessment. The images were manually annotated RGB images. The training and evaluation were conducted with this dataset. For accuracy evaluation, detection of body joints was evaluated via COCO's evaluation metrics and indicated that the resulting depth image-based model achieved better results than the HRNet trained and applied on corresponding RGB images. An additional evaluation of the position errors showed a median deviation of 1.619 cm (x-axis), 2.342 cm (y-axis) and 2.4 cm (z-axis).
Author Büker, Linda Christin
Zuber, Finnja
Hein, Andreas
Fudickar, Sebastian
AuthorAffiliation Assistance Systems and Medical Device Technology, Department of Health Services Research, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; linda.christin.bueker@uni-oldenburg.de (L.C.B.); finnja.zuber@gmx.de (F.Z.); andreas.hein@uni-oldenburg.de (A.H.)
AuthorAffiliation_xml – name: Assistance Systems and Medical Device Technology, Department of Health Services Research, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; linda.christin.bueker@uni-oldenburg.de (L.C.B.); finnja.zuber@gmx.de (F.Z.); andreas.hein@uni-oldenburg.de (A.H.)
Author_xml – sequence: 1
  givenname: Linda Christin
  surname: Büker
  fullname: Büker, Linda Christin
– sequence: 2
  givenname: Finnja
  surname: Zuber
  fullname: Zuber, Finnja
– sequence: 3
  givenname: Andreas
  orcidid: 0000-0001-8846-2282
  surname: Hein
  fullname: Hein, Andreas
– sequence: 4
  givenname: Sebastian
  orcidid: 0000-0002-3553-5131
  surname: Fudickar
  fullname: Fudickar, Sebastian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33672984$$D View this record in MEDLINE/PubMed
BookMark eNplkctuFDEQRS0URB6w4AdQL2HRxM-2zQIpCY8MGkBCs7dq7OqJk572YHuQ8vd0MkmUwKpKVbfOVekekr0xjUjIa0bfC2HpceGMSiZU94wcMMllazine4_6fXJYyiWlXAhhXpB9ITrNrZEH5OT81yfc1IsfWD80t10zW8MK21MoGJrvkK8wt3MspVlk8FdxXDWpb05TuG6-pTjW8pI872Eo-OquHpHFl8-Ls_N2_vPr7Oxk3npFdW3FUhqquaKcMSt9BwEV01J23KLwni-NYlR3xmIHKhjkIDu0VlnkqlO9OCKzHTYkuHSbHNeQr12C6G4HKa8c5Br9gM7w3igZPFhjJestgFY6APilDkoJmFgfd6zNdrnG4HGsGYYn0KebMV64VfrjtGUTmU-At3eAnH5vsVS3jsXjMMCIaVscl9ZMn2raTdI3j70eTO4jmATHO4HPqZSMvfOxQo3pxjoOjlF3E7J7CHm6ePfPxT30f-1fY0-jxw
CitedBy_id crossref_primary_10_3390_s21123944
crossref_primary_10_1016_j_aei_2022_101596
crossref_primary_10_3390_s22145282
crossref_primary_10_3390_ijerph19031179
crossref_primary_10_3390_s24196329
Cites_doi 10.1109/CVPR.2019.00584
10.1109/EMBC.2012.6346149
10.1109/ICRA.2011.5980567
10.1155/2015/186780
10.1109/CVPR.2010.5540141
10.1109/CVPR.2011.5995316
10.1109/SIBGRA.2003.1240987
10.1109/MRA.2018.2852795
10.1109/TPAMI.2019.2929257
10.1111/jgs.16135
10.1590/bjpt-rbf.2014.0067
10.1186/1687-6180-2012-36
10.1155/2016/5036857
10.1109/ICCV.2011.6126310
10.3389/fneur.2019.00283
10.1145/2366145.2366207
10.1007/978-3-030-61609-0_21
10.1017/CBO9780511811685
10.3390/s17071591
10.3390/s19061370
10.3390/s18010014
10.1109/SACI.2011.5873039
10.3390/s18103310
10.1007/978-3-030-59830-3
10.3390/s20102824
10.1016/j.medengphy.2017.03.007
10.1109/ICHI48887.2020.9374363
ContentType Journal Article
Copyright 2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/s21041356
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_82f854dca98941f9aa757daacb7d553a
PMC7918542
33672984
10_3390_s21041356
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7X8
PJZUB
PPXIY
PUEGO
5PM
ID FETCH-LOGICAL-c507t-3b480725021194c6ade51744629e3cc2b85107689e6a5d8e2a46e9959e2565f3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:14:57 EDT 2025
Thu Aug 21 17:51:58 EDT 2025
Thu Sep 04 17:35:49 EDT 2025
Wed Feb 19 02:28:13 EST 2025
Thu Apr 24 23:08:04 EDT 2025
Tue Jul 01 03:56:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords marker-less tracking
timed “up &amp
TUG
5 × SST
go” test
depth camera
machine learning
algorithm
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-3b480725021194c6ade51744629e3cc2b85107689e6a5d8e2a46e9959e2565f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8846-2282
0000-0002-3553-5131
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21041356
PMID 33672984
PQID 2498502706
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_82f854dca98941f9aa757daacb7d553a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7918542
proquest_miscellaneous_2498502706
pubmed_primary_33672984
crossref_citationtrail_10_3390_s21041356
crossref_primary_10_3390_s21041356
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210214
PublicationDateYYYYMMDD 2021-02-14
PublicationDate_xml – month: 2
  year: 2021
  text: 20210214
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Moreira (ref_2) 2015; 19
ref_14
ref_13
ref_12
ref_34
ref_33
ref_32
ref_31
ref_30
ref_19
Eltoukhy (ref_4) 2017; 44
ref_18
ref_17
ref_15
Cao (ref_16) 2019; 43
Peters (ref_10) 2015; 15
ref_25
ref_24
ref_23
ref_22
Suchi (ref_35) 2019; 26
ref_21
ref_20
ref_1
Jung (ref_11) 2019; 67
ref_3
ref_29
ref_28
ref_27
ref_26
ref_9
ref_8
Castelli (ref_6) 2015; 2015
ref_5
ref_7
References_xml – ident: ref_17
  doi: 10.1109/CVPR.2019.00584
– ident: ref_30
– ident: ref_32
– ident: ref_31
  doi: 10.1109/EMBC.2012.6346149
– ident: ref_34
– ident: ref_26
  doi: 10.1109/ICRA.2011.5980567
– volume: 2015
  start-page: 186780
  year: 2015
  ident: ref_6
  article-title: A 2D Markerless Gait Analysis Methodology: Validation on Healthy Subjects
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2015/186780
– ident: ref_21
  doi: 10.1109/CVPR.2010.5540141
– ident: ref_22
  doi: 10.1109/CVPR.2011.5995316
– ident: ref_27
  doi: 10.1109/SIBGRA.2003.1240987
– volume: 26
  start-page: 67
  year: 2019
  ident: ref_35
  article-title: An Empirical Evaluation of Ten Depth Cameras: Bias, Precision, Lateral Noise, Different Lighting Conditions and Materials, and Multiple Sensor Setups in Indoor Environments
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2018.2852795
– volume: 43
  start-page: 172
  year: 2019
  ident: ref_16
  article-title: OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2929257
– volume: 67
  start-page: 2605
  year: 2019
  ident: ref_11
  article-title: Validation of a Multi–Sensor-Based Kiosk for Short Physical Performance Battery
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/jgs.16135
– ident: ref_18
– volume: 19
  start-page: 61
  year: 2015
  ident: ref_2
  article-title: Spatiotemporal gait parameters and recurrent falls in community-dwelling elderly women: A prospective study
  publication-title: Braz. J. Phys. Ther.
  doi: 10.1590/bjpt-rbf.2014.0067
– ident: ref_24
  doi: 10.1186/1687-6180-2012-36
– ident: ref_14
  doi: 10.1155/2016/5036857
– ident: ref_20
  doi: 10.1109/ICCV.2011.6126310
– ident: ref_3
  doi: 10.3389/fneur.2019.00283
– ident: ref_23
  doi: 10.1145/2366145.2366207
– ident: ref_25
– ident: ref_19
  doi: 10.1007/978-3-030-61609-0_21
– ident: ref_29
– ident: ref_33
– volume: 15
  start-page: 1
  year: 2015
  ident: ref_10
  article-title: Description of spatio-temporal gait parameters in elderly people and their association with history of falls: Results of the population-based cross-sectional KORA-Age study
  publication-title: BMC Geriatr.
– ident: ref_28
  doi: 10.1017/CBO9780511811685
– ident: ref_1
  doi: 10.3390/s17071591
– ident: ref_12
  doi: 10.3390/s19061370
– ident: ref_9
  doi: 10.3390/s18010014
– ident: ref_5
  doi: 10.1109/SACI.2011.5873039
– ident: ref_8
  doi: 10.3390/s18103310
– ident: ref_13
  doi: 10.1007/978-3-030-59830-3
– ident: ref_7
  doi: 10.3390/s20102824
– volume: 44
  start-page: 1
  year: 2017
  ident: ref_4
  article-title: Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson’s disease
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2017.03.007
– ident: ref_15
  doi: 10.1109/ICHI48887.2020.9374363
SSID ssj0023338
Score 2.374029
Snippet With approaches for the detection of joint positions in color images such as HRNet and OpenPose being available, consideration of corresponding approaches for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1356
SubjectTerms 5 × SST
Aged
Color
depth camera
go” test
Humans
Joints
Machine Learning
marker-less tracking
Postural Balance
Time and Motion Studies
timed “up &amp
TUG
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_i2_VFFA9egtokTeptV11WUQ-i4K3kiYK2i1sP_ntn2u6yK4IXb6UNTZhpMt_XTL4h5IhbLVySeXYWomFCy5QZq1PmuVSnLgkiCjwofHefDp7EzbN8nir1hTlhjTxwY7gTnUQthXcGlcLPYmaMksob46zyUvIaGkHMG5OplmpxYF6NjhAHUn8yAmIDqzVWqZ6KPrVI_2_I8meC5FTE6S-TpRYq0m4zxBUyF4pVsjglILhGuoOHyzCsXu5DdU7rK3r9DisE60Fw8hQP4oQPdgurGYWg5PC3OC0j7ZX-i96Ur0U1WieP_avHiwFriyIwB9CtYtziIXAALijNJlxqfECxaZEmWeDOJRYgFO6uZSE10uuQGJEGFBULAG5k5BtkviiLsEWoh1dJnMHBoSqhtNG6aG3UQGqcylSHHI9tlbtWMBzrVrzlQBzQrPnErB1yOGk6bFQyfmvUQ4NPGqCwdX0D3J237s7_cneHHIzdlcNEwN0NU4Tyc5QDj9RgFXUKHW027pt0xXkKJEKLDlEzjp0Zy-yT4vWlFttWGSAakWz_x-B3yEKCKTFYT0bskvnq4zPsAaap7H79-X4D8HD0gQ
  priority: 102
  providerName: Directory of Open Access Journals
Title HRDepthNet: Depth Image-Based Marker-Less Tracking of Body Joints
URI https://www.ncbi.nlm.nih.gov/pubmed/33672984
https://www.proquest.com/docview/2498502706
https://pubmed.ncbi.nlm.nih.gov/PMC7918542
https://doaj.org/article/82f854dca98941f9aa757daacb7d553a
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71cYED4t3wiAziwGUh9T6NhFADDaGiEapaKTdrX6aVil0SV6L_nhnHsWqUAxfLstdea8az883uzjcAb7gzwqdZYPuxsEwYqZh1RrHApR75NIpCUKLw8UxNz8TRXM63YF1jsxXgcmNoR_WkzhaX7_78vvmEBv-RIk4M2d8vMWzBsViqbdhFh6To5z4W3WJCynlT0Jpyuhj6w9GKYKj_aM8tNez9myDnvzsnb7miyX2412LI5GCl9AewFcuHcPcWs-AjOJiefIlX9fks1h-S5iz59guHDjZGrxUSytCJC_Ydh7kEvZWn-fKkKpJxFW6So-qirJeP4XRyePp5ytpqCcwjpqsZd5QdjoiGONuEVzZEYqEWKs0i9z51iK1o2S2LyspgYmqFisQ2FhH1yII_gZ2yKuMeJAFfJcm0oye6QukK5wvnCoPRjteZHsDbtaxy3zKJU0GLyxwjChJr3ol1AK-7plcr-oxNjcYk8K4BMV43F6rFz7w1oNykhZEieEuM8ftFZq2WOljrnQ5ScjuAV2t15WghtOxhy1hdL3MMMA1KRY-wo6cr9XVdca4wujBiALqn2N639O-UF-cNC7fOEOqI9Nl_9Psc7qS0FYbqyIgXsFMvruNLxDK1G8K2nms8msnXIeyOD2c_TobNvMCw-Yf_ApYN9LE
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HRDepthNet%3A+Depth+Image-Based+Marker-Less+Tracking+of+Body+Joints&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=B%C3%BCker%2C+Linda+Christin&rft.au=Zuber%2C+Finnja&rft.au=Hein%2C+Andreas&rft.au=Fudickar%2C+Sebastian&rft.date=2021-02-14&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=4&rft_id=info:doi/10.3390%2Fs21041356&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon