Non-swelling hydrogel-based microfluidic chips

Hydrogel-based microfluidic chips are more biologically relevant than conventional polydimethylsiloxane (PDMS) chips, but the inherent swelling of hydrogels leads to a decrease in mechanical performance and deformation of the as-prepared structure in their manufacture and application processing. Non...

Full description

Saved in:
Bibliographic Details
Published inLab on a chip Vol. 19; no. 23; pp. 3962 - 3973
Main Authors Shen, Chong, Li, Yingjun, Wang, Ying, Meng, Qin
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 07.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hydrogel-based microfluidic chips are more biologically relevant than conventional polydimethylsiloxane (PDMS) chips, but the inherent swelling of hydrogels leads to a decrease in mechanical performance and deformation of the as-prepared structure in their manufacture and application processing. Non-swelling hydrogel has, for the first time, been utilized to construct microfluidic chips in this study. It was fabricated by covalently cross-linking the biocompatible copolymer of di-acrylated Pluronic F127 (F127-DA). Thanks to their non-swelling property, the hydrogel-based microfluidic chips maintain their as-prepared mechanical strength and channel morphology when equilibrated in aqueous solution at 37 °C. Moreover, the microfluidic chips are autoclavable and show an appropriately slow degradation rate by remaining stable within 21 days of incubation. Based on these properties, a vessel-on-a-chip was established by seeding human umbilical vein endothelial cells (HUVECs) onto the microchannel surfaces inside the microfluidic chip. Under 6 days of perfusion culture with a physiologically relevant shear stress of 5 dyne per cm 2 , the HUVECs in the chip show responsivity to fluid shear stress and express higher endothelial functions than the corresponding static culture. Therefore, non-swelling hydrogel-based microfluidic chips could potentially be applicable for cell/tissue-related applications, performing much better than conventional PDMS or existing hydrogel based microfluidic chips. We use a non-swelling hydrogel to construct microfluidic chips and show that they could potentially be applicable for cell/tissue-related applications, performing much better than conventional PDMS or existing hydrogel based microfluidic chips.
Bibliography:10.1039/c9lc00564a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1473-0197
1473-0189
DOI:10.1039/c9lc00564a