Nonlinear analysis of natural folds using wavelet transforms and recurrence plots

Three-dimensional models of natural geological fold systems established by photogrammetry are quantified in order to constrain the processes responsible for their formation. The folds are treated as nonlinear dynamical systems and the quantification is based on the two features that characterize suc...

Full description

Saved in:
Bibliographic Details
Published inPhilosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences Vol. 376; no. 2126; p. 20170257
Main Authors Ord, Alison, Hobbs, Bruce, Dering, Greg, Gessner, Klaus
Format Journal Article
LanguageEnglish
Published England The Royal Society Publishing 13.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Three-dimensional models of natural geological fold systems established by photogrammetry are quantified in order to constrain the processes responsible for their formation. The folds are treated as nonlinear dynamical systems and the quantification is based on the two features that characterize such systems, namely their multifractal geometry and recurrence quantification. The multifractal spectrum is established using wavelet transforms and the wavelet transform modulus maxima method, the generalized fractal or Renyi dimensions and the Hurst exponents for longitudinal and orthogonal sections of the folds. Recurrence is established through recurrence quantification analysis (RQA). We not only examine natural folds but also compare their signals with synthetic signals comprising periodic patterns with superimposed noise, and quasi-periodic and chaotic signals. These results indicate that the natural fold systems analysed resemble periodic signals with superimposed chaotic signals consistent with the nonlinear dynamical theory of folding. Prediction based on nonlinear dynamics, in this case through RQA, takes into account the full mechanics of the formation of the geological system. This article is part of the theme issue 'Redundancy rules: the continuous wavelet transform comes of age'.
Bibliography:Theme issue ‘Redundancy rules: the continuous wavelet transform comes of age’ compiled and edited by Paul S. Addison
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1364-503X
1471-2962
DOI:10.1098/rsta.2017.0257