Self‐Supporting, Flexible, Additive‐Free, and Scalable Hard Carbon Paper Self‐Interwoven by 1D Microbelts: Superb Room/Low‐Temperature Sodium Storage and Working Mechanism

Hard carbon is regarded as a promising anode material for sodium‐ion batteries (SIBs). However, it usually suffers from the issues of low initial Coulombic efficiency (ICE) and poor rate performance, severely hindering its practical application. Herein, a flexible, self‐supporting, and scalable hard...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 40; pp. e1903125 - n/a
Main Authors Hou, Bao‐Hua, Wang, Ying‐Ying, Ning, Qiu‐Li, Li, Wen‐Hao, Xi, Xiao‐Tong, Yang, Xu, Liang, Hao‐Jie, Feng, Xi, Wu, Xing‐Long
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hard carbon is regarded as a promising anode material for sodium‐ion batteries (SIBs). However, it usually suffers from the issues of low initial Coulombic efficiency (ICE) and poor rate performance, severely hindering its practical application. Herein, a flexible, self‐supporting, and scalable hard carbon paper (HCP) derived from scalable and renewable tissue is rationally designed and prepared as practical additive‐free anode for room/low‐temperature SIBs with high ICE. In ether electrolyte, such HCP achieves an ICE of up to 91.2% with superior high‐rate capability, ultralong cycle life (e.g., 93% capacity retention over 1000 cycles at 200 mA g−1) and outstanding low‐temperature performance. Working mechanism analyses reveal that the plateau region is the rate‐determining step for HCP with a lower electrochemical reaction kinetics, which can be significantly improved in ether electrolyte. A self‐supporting, flexible, additive‐free and scalable hard carbon paper (HCP) derived from tissue is rationally developed, and it achieves outstanding Na‐storage properties in terms of high initial Coulombic efficiency (91.2%), superior high‐rate capability, ultralong cyclic stability, as well as outstanding low‐T performance in ether electrolyte. More significantly, the Na‐storage and capacity attenuation mechanism of the HCP anode is revealed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0935-9648
1521-4095
1521-4095
DOI:10.1002/adma.201903125