Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93

Cyan variants of green fluorescent protein are widely used as donors in Förster resonance energy transfer experiments. The popular, but modestly bright, Enhanced Cyan Fluorescent Protein (ECFP) was sequentially improved into the brighter variants Super Cyan Fluorescent Protein 3A (SCFP3A) and mTurqu...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 3; no. 1; p. 751
Main Authors Goedhart, Joachim, von Stetten, David, Noirclerc-Savoye, Marjolaine, Lelimousin, Mickaël, Joosen, Linda, Hink, Mark A., van Weeren, Laura, Gadella, Theodorus W.J., Royant, Antoine
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.03.2012
Nature Publishing Group
Nature Pub. Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cyan variants of green fluorescent protein are widely used as donors in Förster resonance energy transfer experiments. The popular, but modestly bright, Enhanced Cyan Fluorescent Protein (ECFP) was sequentially improved into the brighter variants Super Cyan Fluorescent Protein 3A (SCFP3A) and mTurquoise, the latter exhibiting a high-fluorescence quantum yield and a long mono-exponential fluorescence lifetime. Here we combine X-ray crystallography and excited-state calculations to rationalize these stepwise improvements. The enhancement originates from stabilization of the seventh β-strand and the strengthening of the sole chromophore-stabilizing hydrogen bond. The structural analysis highlighted one suboptimal internal residue, which was subjected to saturation mutagenesis combined with fluorescence lifetime-based screening. This resulted in mTurquoise2, a brighter variant with faster maturation, high photostability, longer mono-exponential lifetime and the highest quantum yield measured for a monomeric fluorescent protein. Together, these properties make mTurquoise2 the preferable cyan variant of green fluorescent protein for long-term imaging and as donor for Förster resonance energy transfer to a yellow fluorescent protein. Cyan variants of green fluorescent protein (CFPs) are widely used as donors in FRET experiments. Here, a new CFP, mTurquoise2, is developed, which displays a high-fluorescence quantum yield and a long mono-exponential fluorescence lifetime.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms1738