The Human SNF5/INI1 Protein Facilitates the Function of the Growth Arrest and DNA Damage-inducible Protein (GADD34) and Modulates GADD34-bound Protein Phosphatase-1 Activity

The growth arrest andDNA damage-inducible protein (GADD34) mediates growth arrest and apoptosis in response to DNA damage, negative growth signals, and protein malfolding. GADD34 binds to protein phosphatase-1 (PP1) and can attenuate translational elongation of key transcriptional factors through de...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 277; no. 31; pp. 27706 - 27715
Main Authors Wu, Daniel Y., Tkachuck, Douglas C., Roberson, Rachel S., Schubach, William H.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 02.08.2002
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The growth arrest andDNA damage-inducible protein (GADD34) mediates growth arrest and apoptosis in response to DNA damage, negative growth signals, and protein malfolding. GADD34 binds to protein phosphatase-1 (PP1) and can attenuate translational elongation of key transcriptional factors through dephosphorylation of eukaryotic initiation factor-2α. We reported previously that the human trithorax leukemia fusion protein (HRX) can bind to GADD34 and abrogate GADD34-mediated apoptosis in response to UV irradiation. We found that hSNF5/INI1, a component of the hSWI/SNF chromatin remodeling complex, also binds to GADD34 and can coexist with GADD34 and HRX fusion proteins as a trimolecular complexesin vivo. In the present report, we demonstrate that hSNF5/INI1 binds to GADD34 in part through the PP1 docking site within a domain homologous to herpes simplex virus-1 ICP34.5. We found that hSNF5/INI1 can bind PP1 independently and weakly stimulate its phosphatase activity in solution and in complex with GADD34. hSNF5/INI1 and PP1 do not compete for binding to GADD34 but rather form a stable heterotrimeric complex with GADD34. We also show that Epstein-Barr nuclear protein 2, which binds hSNF5/INI1, can disrupt hSNF5/INI1 binding to GADD34 and partially reverse the GADD34-mediated growth suppression function in Ha-ras expressing HIH-3T3 (3T3-ras) cells. These results implicate hSNF5/INI1 in the function of GADD34 and suggest that hSNF5/INI1 may regulate PP1 activity in vivo.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M200955200