The DESI Bright Galaxy Survey: Final Target Selection, Design, and Validation

Abstract Over the next 5 yr, the Dark Energy Spectroscopic Instrument (DESI) will use 10 spectrographs with 5000 fibers on the 4 m Mayall Telescope at Kitt Peak National Observatory to conduct the first Stage IV dark energy galaxy survey. At z < 0.6, the DESI Bright Galaxy Survey (BGS) will produ...

Full description

Saved in:
Bibliographic Details
Published inThe Astronomical journal Vol. 165; no. 6; pp. 253 - 276
Main Authors Hahn, ChangHoon, Wilson, Michael J., Ruiz-Macias, Omar, Cole, Shaun, Weinberg, David H., Moustakas, John, Kremin, Anthony, Tinker, Jeremy L., Smith, Alex, Wechsler, Risa H., Ahlen, Steven, Alam, Shadab, Bailey, Stephen, Brooks, David, Cooper, Andrew P., Davis, Tamara M., Dawson, Kyle, Dey, Arjun, Dey, Biprateep, Eftekharzadeh, Sarah, Eisenstein, Daniel J., Fanning, Kevin, Forero-Romero, Jaime E., Frenk, Carlos S., Gaztañaga, Enrique, A Gontcho, Satya Gontcho, Guy, Julien, Honscheid, Klaus, Ishak, Mustapha, Juneau, Stéphanie, Kehoe, Robert, Kisner, Theodore, Lan, Ting-Wen, Landriau, Martin, Le Guillou, Laurent, Levi, Michael E., Magneville, Christophe, Martini, Paul, Meisner, Aaron, Myers, Adam D., Nie, Jundan, Norberg, Peder, Palanque-Delabrouille, Nathalie, Percival, Will J., Poppett, Claire, Prada, Francisco, Raichoor, Anand, Ross, Ashley J., Gaines, Sasha, Saulder, Christoph, Schlafly, Eddie, Schlegel, David, Sierra-Porta, David, Tarle, Gregory, Weaver, Benjamin A., Yèche, Christophe, Zarrouk, Pauline, Zhou, Rongpu, Zhou, Zhimin, Zou, Hu
Format Journal Article
LanguageEnglish
Published Madison The American Astronomical Society 01.06.2023
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Over the next 5 yr, the Dark Energy Spectroscopic Instrument (DESI) will use 10 spectrographs with 5000 fibers on the 4 m Mayall Telescope at Kitt Peak National Observatory to conduct the first Stage IV dark energy galaxy survey. At z < 0.6, the DESI Bright Galaxy Survey (BGS) will produce the most detailed map of the universe during the dark-energy-dominated epoch with redshifts of >10 million galaxies spanning 14,000 deg 2 . In this work, we present and validate the final BGS target selection and survey design. From the Legacy Surveys, BGS will target an r < 19.5 mag limited sample (BGS Bright), a fainter 19.5 < r < 20.175 color-selected sample (BGS Faint), and a smaller low- z quasar sample. BGS will observe these targets using exposure times scaled to achieve homogeneous completeness and cover the footprint three times. We use observations from the Survey Validation programs conducted prior to the main survey along with simulations to show that BGS can complete its strategy and make optimal use of “bright” time. BGS targets have stellar contamination <1%, and their densities do not depend strongly on imaging properties. BGS Bright will achieve >80% fiber assignment efficiency. Finally, BGS Bright and BGS Faint will achieve >95% redshift success over any observing condition. BGS meets the requirements for an extensive range of scientific applications. BGS will yield the most precise baryon acoustic oscillation and redshift-space distortion measurements at z < 0.4. It presents opportunities for new methods that require highly complete and dense samples (e.g., N -point statistics, multitracers). BGS further provides a powerful tool to study galaxy populations and the relations between galaxies and dark matter.
Bibliography:AAS41542
Galaxies and Cosmology
USDOE Office of Science (SC), High Energy Physics (HEP)
National Science Foundation (NSF)
AC02-76SF00515; AC02-05CH11231
USDOE Office of Science (SC), Basic Energy Sciences (BES)
ISSN:0004-6256
1538-3881
DOI:10.3847/1538-3881/accff8