Whole genome sequence-enabled prediction of sequences performed for random PCR products of Escherichia coli

The sequence of an unknown PCR product generated by random (and conventional) PCR could be determined without sequencing when it is provided with the template DNA sequence. Theoretically, this was based on formerly established ideas which assert that the amount of random PCR product mainly depends o...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 28; no. 9; pp. 1879 - 1884
Main Authors Nishigaki, K, Saito, A, Takashi, H, Naimuddin, M
Format Journal Article
LanguageEnglish
Published England Oxford Publishing Limited (England) 01.05.2000
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The sequence of an unknown PCR product generated by random (and conventional) PCR could be determined without sequencing when it is provided with the template DNA sequence. Theoretically, this was based on formerly established ideas which assert that the amount of random PCR product mainly depends on the stability of the primer-binding structures and that the dynamic solution structure of DNA is essentially governed by the Watson-Crick base pairing. However, it has not been clear whether this holds true for larger genomes of mega- to gigabase size, beside the lambda phage genome (of 50 kb) used previously, nor has it been ascertained to uniquely specify the sequence of a random PCR product. Here, we jointly use two computer programs together with experimental data from Genome Profiling (i.e. TGGE analysis of random PCR products). The first procedure carried out by a newly remodeled computer program (PCRAna-A1) was shown to be competent to calculate a set of random PCR products from Escherichia coli genome DNA (4.7 Mb). The other procedure performed with another program (Poland-H) played a critical role in determining the final candidate sequence by theoretically offering the initial melting temperature and the melting pattern of unspecified candidate sequences. The success attained here not only proved our method to be useful for sequence prediction but also confirmed the above-mentioned ideas as rational. We believe that this is the first case to computer-utilize a genome sequence as a whole.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
To whom correspondence should be addressed. Tel/Fax: +81 48 858 3533; Email: koichi@fms.saitama-u.ac.jp
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/28.9.1879