Combining Longitudinal Data From Different Cohorts to Examine the Life-Course Trajectory
Longitudinal data are necessary to reveal changes within an individual as he or she ages. However, rarely will a single cohort study capture data throughout a person’s entire life span. Here we describe in detail the steps needed to develop life-course trajectories from cohort studies that cover dif...
Saved in:
Published in | American journal of epidemiology Vol. 190; no. 12; pp. 2680 - 2689 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.12.2021
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Longitudinal data are necessary to reveal changes within an individual as he or she ages. However, rarely will a single cohort study capture data throughout a person’s entire life span. Here we describe in detail the steps needed to develop life-course trajectories from cohort studies that cover different and overlapping periods of life. Such independent studies are probably from heterogenous populations, which raises several challenges, including: 1) data harmonization (deriving new harmonized variables from differently measured variables by identifying common elements across all studies); 2) systematically missing data (variables not measured are missing for all participants in a cohort); and 3) model selection with differing age ranges and measurement schedules. We illustrate how to overcome these challenges using an example which examines the associations of parental education, sex, and race/ethnicity with children’s weight trajectories. Data were obtained from 5 prospective cohort studies (carried out in Belarus and 4 regions of the United Kingdom) spanning data collected from birth to early adulthood during differing calendar periods (1936–1964, 1972–1979, 1990–2012, 1996–2016, and 2007–2015). Key strengths of our approach include modeling of trajectories over wide age ranges, sharing of information across studies, and direct comparison of the same parts of the life course in different geographical regions and time periods. We also introduce a novel approach of imputing individual-level covariates of a multilevel model with a nonlinear growth trajectory and interactions. |
---|---|
AbstractList | Longitudinal data are necessary to reveal changes within an individual as he or she ages. However, rarely will a single cohort study capture data throughout a person’s entire life span. Here we describe in detail the steps needed to develop life-course trajectories from cohort studies that cover different and overlapping periods of life. Such independent studies are probably from heterogenous populations, which raises several challenges, including: 1) data harmonization (deriving new harmonized variables from differently measured variables by identifying common elements across all studies); 2) systematically missing data (variables not measured are missing for all participants in a cohort); and 3) model selection with differing age ranges and measurement schedules. We illustrate how to overcome these challenges using an example which examines the associations of parental education, sex, and race/ethnicity with children’s weight trajectories. Data were obtained from 5 prospective cohort studies (carried out in Belarus and 4 regions of the United Kingdom) spanning data collected from birth to early adulthood during differing calendar periods (1936–1964, 1972–1979, 1990–2012, 1996–2016, and 2007–2015). Key strengths of our approach include modeling of trajectories over wide age ranges, sharing of information across studies, and direct comparison of the same parts of the life course in different geographical regions and time periods. We also introduce a novel approach of imputing individual-level covariates of a multilevel model with a nonlinear growth trajectory and interactions. Longitudinal data are necessary to reveal changes within an individual as he or she ages. However, rarely will a single cohort study capture data throughout a person's entire life span. Here we describe in detail the steps needed to develop life-course trajectories from cohort studies that cover different and overlapping periods of life. Such independent studies are probably from heterogenous populations, which raises several challenges, including: 1) data harmonization (deriving new harmonized variables from differently measured variables by identifying common elements across all studies); 2) systematically missing data (variables not measured are missing for all participants in a cohort); and 3) model selection with differing age ranges and measurement schedules. We illustrate how to overcome these challenges using an example which examines the associations of parental education, sex, and race/ethnicity with children's weight trajectories. Data were obtained from 5 prospective cohort studies (carried out in Belarus and 4 regions of the United Kingdom) spanning data collected from birth to early adulthood during differing calendar periods (1936-1964, 1972-1979, 1990-2012, 1996-2016, and 2007-2015). Key strengths of our approach include modeling of trajectories over wide age ranges, sharing of information across studies, and direct comparison of the same parts of the life course in different geographical regions and time periods. We also introduce a novel approach of imputing individual-level covariates of a multilevel model with a nonlinear growth trajectory and interactions.Longitudinal data are necessary to reveal changes within an individual as he or she ages. However, rarely will a single cohort study capture data throughout a person's entire life span. Here we describe in detail the steps needed to develop life-course trajectories from cohort studies that cover different and overlapping periods of life. Such independent studies are probably from heterogenous populations, which raises several challenges, including: 1) data harmonization (deriving new harmonized variables from differently measured variables by identifying common elements across all studies); 2) systematically missing data (variables not measured are missing for all participants in a cohort); and 3) model selection with differing age ranges and measurement schedules. We illustrate how to overcome these challenges using an example which examines the associations of parental education, sex, and race/ethnicity with children's weight trajectories. Data were obtained from 5 prospective cohort studies (carried out in Belarus and 4 regions of the United Kingdom) spanning data collected from birth to early adulthood during differing calendar periods (1936-1964, 1972-1979, 1990-2012, 1996-2016, and 2007-2015). Key strengths of our approach include modeling of trajectories over wide age ranges, sharing of information across studies, and direct comparison of the same parts of the life course in different geographical regions and time periods. We also introduce a novel approach of imputing individual-level covariates of a multilevel model with a nonlinear growth trajectory and interactions. |
Author | Lawlor, Deborah A Hughes, Rachael A Tilling, Kate |
Author_xml | – sequence: 1 givenname: Rachael A surname: Hughes fullname: Hughes, Rachael A email: rachael.hughes@bristol.ac.uk – sequence: 2 givenname: Kate surname: Tilling fullname: Tilling, Kate – sequence: 3 givenname: Deborah A surname: Lawlor fullname: Lawlor, Deborah A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34215868$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFrFDEUh4NU7LZ68i4BQQSZ9iWTZGYuBZm2VljwUsFbyEwyu1lnkjXJqP3vzbJbqUV6yuF978eX3ztBR847g9BrAmcEmvJcbcz591-qIw08QwvCKlEIysURWgAALRoq6DE6iXEDQEjD4QU6LhklvBb1An1r_dRZZ90KL71b2TRr69SIL1VS-Dr4CV_aYTDBuIRbv_YhRZw8vvqtJusMTmuDl3YwRevnEA2-DdmmTz7cvUTPBzVG8-rwnqKv11e37U2x_PLpc_txWfQcRCpEB1WvBkO6qgIoO-C90lrXpNRNV9dM8541qmJllugIbQjrmgEGrgE0baAsT9HFPnc7d5PRfRYNapTbYCcV7qRXVv47cXYtV_6nrEXJuKA54P0hIPgfs4lJTjb2ZhyVM36OknJWM-CiqjP69hG6yd_OdWWqZrlzxvgu8M1Do78q96VngOyBPvgYgxlkb5NK1u8E7SgJyN1hZa5SHg6bdz482rmP_T_9bk_7efsk-AfAH7Od |
CitedBy_id | crossref_primary_10_1093_aje_kwad206 crossref_primary_10_1016_j_alcr_2022_100499 crossref_primary_10_1093_epirev_mxad010 crossref_primary_10_1108_JOLE_05_2024_0070 crossref_primary_10_1093_eurheartj_ehac726 crossref_primary_10_1007_s00125_024_06328_9 crossref_primary_10_1038_s41597_024_02956_3 crossref_primary_10_1007_s40471_024_00355_1 crossref_primary_10_1097_EDE_0000000000001761 crossref_primary_10_3390_ijerph192114167 crossref_primary_10_1186_s12874_022_01542_8 |
Cites_doi | 10.1177/0962280214532576 10.1002/bimj.201900051 10.1002/9780470316696 10.1002/sim.7974 10.1007/s11749-009-0138-x 10.1136/adc.56.11.831 10.1002/sim.8004 10.1001/jama.285.4.413 10.1093/ije/dys112 10.1093/ije/dyt003 10.1093/ije/dyi319 10.1136/jech.57.10.778 10.1002/sim.6451 10.1186/s12874-020-01079-8 10.1002/sim.4333 10.1093/oso/9780198524847.001.0001 10.1037/met0000228 10.1093/esr/jcv059 10.1371/journal.pmed.1000440 10.1201/9781420011579 10.1002/9781119942283 10.1001/jamapediatrics.2017.0698 10.1093/ije/dyz032 10.1002/sim.5894 10.1093/ije/dys064 10.1093/fampra/13.4.397 10.1186/s12916-015-0273-z 10.1038/sj.ijo.0803156 10.1093/ajcn/86.4.907 10.1186/s12916-018-1123-6 10.1111/j.1365-3016.1988.tb00180.x 10.1002/sim.6837 10.2307/2986270 10.1177/0962280213503925 10.1080/00273171.2018.1477040 10.1002/sim.4780080504 10.1002/sim.3775 10.1002/9780470770771 10.3102/1076998617738087 10.1093/ije/dys066 10.1002/sim.7696 10.3917/soco.045.0075 10.1093/ije/dyy264 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2021 The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2021 – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7T2 7TK 7U7 7U9 C1K H94 K9. NAPCQ 7X8 5PM |
DOI | 10.1093/aje/kwab190 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Health and Safety Science Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Virology and AIDS Abstracts Toxicology Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Safety Science Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Nursing & Allied Health Premium MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 1476-6256 |
EndPage | 2689 |
ExternalDocumentID | PMC8634562 34215868 10_1093_aje_kwab190 10.1093/aje/kwab190 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Republic of Belarus United Kingdom |
GeographicLocations_xml | – name: United Kingdom – name: Republic of Belarus |
GrantInformation_xml | – fundername: British Heart Foundation grantid: CS/16/4/32482 – fundername: Wellcome Trust – fundername: Medical Research Council grantid: MC_UU_00011/3 – fundername: Wellcome Trust grantid: 215408/Z/19/Z – fundername: NICHD NIH HHS grantid: R01 HD050758 – fundername: Medical Research Council grantid: MC_UU_00011/6 – fundername: Medical Research Council grantid: MC_PC_21038 – fundername: Cancer Research UK – fundername: Wellcome Trust grantid: 217065/Z/19/Z – fundername: Medical Research Council grantid: MR/N024397/1 |
GroupedDBID | --- -DZ -E4 -~X ..I .2P .55 .GJ .I3 .XZ .ZR 0R~ 186 1CY 1TH 23M 2WC 354 3O- 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6.Y 6J9 70D 85S 8F7 AABZA AACZT AAJKP AAJQQ AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AAQQT AARHZ AASNB AAUAY AAUQX AAVAP AAWDT AAWTL AAYJJ ABEFU ABEUO ABIXL ABJNI ABKDP ABLJU ABNHQ ABNKS ABOCM ABPTD ABQLI ABQTQ ABSAR ABSMQ ABXVV ABZBJ ACFRR ACGFO ACGFS ACGOD ACMRT ACPQN ACPRK ACUFI ACUTJ ACUTO ACZBC ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADJQC ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZXQ AEGPL AEJOX AEKPW AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFIYH AFOFC AFRAH AFSHK AFXEN AFYAG AGINJ AGKEF AGKRT AGMDO AGSYK AHMBA AHXPO AI. AIAGR AIJHB AJEEA ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APJGH APWMN AQDSO AQKUS ASPBG ATGXG ATTQO AVNTJ AVWKF AXUDD AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM BZKNY C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD D~K E3Z EBS EE~ EIHJH EJD EMOBN F3I F5P F9B FEDTE FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IH2 IOX J21 KAQDR KBUDW KC5 KOP KQ8 KSI KSN L7B M-Z M49 MBLQV ML0 N9A NEJ NGC NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAWHX OCZFY ODMLO OHH OHT OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P P6G PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD QZG R44 RD5 RHF RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCURE TEORI TJX TMA TOX TR2 UAP UBC UHB UPT VH1 W8F WOQ X7H X7M YAYTL YF5 YKOAZ YOC YQI YROCO YSK YXANX Z0Y ZGI ZKX ZXP ~91 AAILS AAYXX ABDFA ABEJV ABGNP ABVGC ADCFL ADMHG ADNBA AEHKS AGORE AHGBF AHMMS AJBYB AJNCP ALXQX CITATION JXSIZ CGR CUY CVF ECM EIF NPM 7QP 7T2 7TK 7U7 7U9 C1K H94 K9. NAPCQ 7X8 5PM |
ID | FETCH-LOGICAL-c506t-6b07cafe1b77003b05caddd813d9b884d5c49a743ffeb12914b9f0f5d00d29033 |
IEDL.DBID | TOX |
ISSN | 0002-9262 1476-6256 |
IngestDate | Thu Aug 21 14:01:08 EDT 2025 Fri Jul 11 08:27:24 EDT 2025 Mon Jun 30 08:29:11 EDT 2025 Sat May 31 02:09:05 EDT 2025 Thu Apr 24 22:53:11 EDT 2025 Tue Jul 01 01:20:09 EDT 2025 Wed Aug 28 03:17:37 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Christ’s Hospital School Study Barry Caerphilly Growth Study Born in Bradford Study Promotion of Breastfeeding Intervention Trial Avon Longitudinal Study of Parents and Children mixed-effects models life course repeated measures |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c506t-6b07cafe1b77003b05caddd813d9b884d5c49a743ffeb12914b9f0f5d00d29033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1093/aje/kwab190 |
PMID | 34215868 |
PQID | 2842564452 |
PQPubID | 41038 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8634562 proquest_miscellaneous_2548405678 proquest_journals_2842564452 pubmed_primary_34215868 crossref_citationtrail_10_1093_aje_kwab190 crossref_primary_10_1093_aje_kwab190 oup_primary_10_1093_aje_kwab190 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | American journal of epidemiology |
PublicationTitleAlternate | Am J Epidemiol |
PublicationYear | 2021 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Enders (2021120111530687000_ref35) 2018; 58 Royston (2021120111530687000_ref27) 2008 McCarthy (2021120111530687000_ref9) 2007; 86 Wright (2021120111530687000_ref10) 2013; 42 Hughes (2021120111530687000_ref32) 2019; 48 Enders (2021120111530687000_ref38) 2020; 25 Pevalin (2021120111530687000_ref18) 2002; 45–46 Muniz-Terrera (2021120111530687000_ref3) 2016; 25 United Kingdom Office for National Statistics (2021120111530687000_ref17) Kuh (2021120111530687000_ref1) 2003; 57 Fraser (2021120111530687000_ref6) 2013; 42 Kramer (2021120111530687000_ref12) 2001; 285 Cheng (2021120111530687000_ref30) 2010; 29 Martin (2021120111530687000_ref15) 2017; 171 Rubin (2021120111530687000_ref42) 1987 United Kingdom Office for National Statistics (2021120111530687000_ref19) 2010 Rantakallio (2021120111530687000_ref43) 1988; 2 Durrleman (2021120111530687000_ref26) 1989; 8 Elwood (2021120111530687000_ref8) 1981; 56 Fitzmaurice (2021120111530687000_ref20) 2008 Wills (2021120111530687000_ref2) 2011; 8 Bryan (2021120111530687000_ref23) 2016; 32 Molenberghs (2021120111530687000_ref21) 2001 White (2021120111530687000_ref29) 2019; 38 Quartagno (2021120111530687000_ref39) Sauerbrei (2021120111530687000_ref28) 2011; 30 Parker (2021120111530687000_ref40) 2017 Leon (2021120111530687000_ref44) 2006; 35 Patel (2021120111530687000_ref13) 2014; 43 Britton (2021120111530687000_ref4) 2015; 13 Rolland (2021120111530687000_ref16) 2015; 182 Diggle (2021120111530687000_ref22) 2002 Harrell (2021120111530687000_ref25) 2006 Al Hazzouri (2021120111530687000_ref49) 2019; 48 Wijesuriya (2021120111530687000_ref37) 2020; 20 O’Neill (2021120111530687000_ref45) 2018; 16 Charlton (2021120111530687000_ref46) 1996; 13 Huque (2021120111530687000_ref34) 2020; 62 Resche-Rigon (2021120111530687000_ref33) 2013; 32 Anderson (2021120111530687000_ref5) 2019; 38 Royston (2021120111530687000_ref24) 1994; 43 Carpenter (2021120111530687000_ref41) 2013 Boyd (2021120111530687000_ref7) 2013; 42 Grund (2021120111530687000_ref36) 2018; 43 Pham (2021120111530687000_ref50) 2019; 38 Quartagno (2021120111530687000_ref48) 2016; 35 Sandhu (2021120111530687000_ref11) 2006; 30 Jolani (2021120111530687000_ref47) 2015; 34 Howe (2021120111530687000_ref14) 2016; 25 Ibrahim (2021120111530687000_ref31) 2009; 18 |
References_xml | – volume: 25 start-page: 2767 issue: 6 year: 2016 ident: 2021120111530687000_ref3 article-title: Modelling life course blood pressure trajectories using Bayesian adaptive splines publication-title: Stat Methods Med Res doi: 10.1177/0962280214532576 – volume: 62 start-page: 444 issue: 2 year: 2020 ident: 2021120111530687000_ref34 article-title: Multiple imputation methods for handling incomplete longitudinal and clustered data where the target analysis is a linear mixed effects model publication-title: Biom J doi: 10.1002/bimj.201900051 – volume-title: Multiple Imputation for Nonresponse in Surveys year: 1987 ident: 2021120111530687000_ref42 doi: 10.1002/9780470316696 – volume: 38 start-page: 326 issue: 3 year: 2019 ident: 2021120111530687000_ref29 article-title: Meta-analysis of non-linear exposure-outcome relationships using individual participant data: a comparison of two methods publication-title: Stat Med doi: 10.1002/sim.7974 – volume: 18 start-page: 1 issue: 1 year: 2009 ident: 2021120111530687000_ref31 article-title: Missing data methods in longitudinal studies: a review publication-title: Test doi: 10.1007/s11749-009-0138-x – volume: 56 start-page: 831 issue: 11 year: 1981 ident: 2021120111530687000_ref8 article-title: Child growth (0–5 years), and the effect of entitlement to a milk supplement publication-title: Arch Dis Child doi: 10.1136/adc.56.11.831 – volume: 38 start-page: 792 issue: 5 year: 2019 ident: 2021120111530687000_ref50 article-title: Population-calibrated multiple imputation for a binary/categorical covariate in categorical regression models publication-title: Stat Med doi: 10.1002/sim.8004 – volume: 285 start-page: 413 issue: 4 year: 2001 ident: 2021120111530687000_ref12 article-title: Promotion of Breastfeeding Intervention Trial (PROBIT): a randomized trial in the Republic of Belarus publication-title: JAMA doi: 10.1001/jama.285.4.413 – volume: 42 start-page: 978 issue: 4 year: 2013 ident: 2021120111530687000_ref10 article-title: Cohort profile: the Born in Bradford multi-ethnic family cohort study publication-title: Int J Epidemiol doi: 10.1093/ije/dys112 – volume: 43 start-page: 679 issue: 3 year: 2014 ident: 2021120111530687000_ref13 article-title: Cohort profile: the Promotion of Breastfeeding Intervention Trial (PROBIT) publication-title: Int J Epidemiol doi: 10.1093/ije/dyt003 – volume: 35 start-page: 549 issue: 3 year: 2006 ident: 2021120111530687000_ref44 article-title: Cohort profile: the Aberdeen Children of the 1950s Study publication-title: Int J Epidemiol doi: 10.1093/ije/dyi319 – volume: 57 start-page: 778 issue: 10 year: 2003 ident: 2021120111530687000_ref1 article-title: Life course epidemiology publication-title: J Epidemiol Community Health doi: 10.1136/jech.57.10.778 – volume: 34 start-page: 1841 issue: 11 year: 2015 ident: 2021120111530687000_ref47 article-title: Imputation of systematically missing predictors in an individual participant data meta-analysis: a generalized approach using MICE publication-title: Stat Med doi: 10.1002/sim.6451 – volume-title: Imputation for Multilevel Models With Missing Data Using Stat-JR year: 2017 ident: 2021120111530687000_ref40 – volume: 20 start-page: 207 issue: 1 year: 2020 ident: 2021120111530687000_ref37 article-title: Evaluation of approaches for multiple imputation of three-level data publication-title: BMC Med Res Methodol doi: 10.1186/s12874-020-01079-8 – volume: 30 start-page: 3341 issue: 28 year: 2011 ident: 2021120111530687000_ref28 article-title: A new strategy for meta-analysis of continuous covariates in observational studies publication-title: Stat Med doi: 10.1002/sim.4333 – volume-title: Analysis of Longitudinal Data year: 2002 ident: 2021120111530687000_ref22 doi: 10.1093/oso/9780198524847.001.0001 – volume: 25 start-page: 88 issue: 1 year: 2020 ident: 2021120111530687000_ref38 article-title: A model-based imputation procedure for multilevel regression models with random coefficients, interaction effects, and nonlinear terms publication-title: Psychol Methods doi: 10.1037/met0000228 – volume: 32 start-page: 3 issue: 1 year: 2016 ident: 2021120111530687000_ref23 article-title: Multilevel modelling of country effects: a cautionary tale publication-title: Eur Sociol Rev doi: 10.1093/esr/jcv059 – volume: 8 issue: 6 year: 2011 ident: 2021120111530687000_ref2 article-title: Life course trajectories of systolic blood pressure using longitudinal data from eight UK cohorts publication-title: PLoS Med doi: 10.1371/journal.pmed.1000440 – volume-title: The National Statistics Socio-Economic Classification User Manual year: 2010 ident: 2021120111530687000_ref19 – ident: 2021120111530687000_ref39 – start-page: 31 volume-title: Longitudinal Data Analysis year: 2008 ident: 2021120111530687000_ref20 doi: 10.1201/9781420011579 – volume-title: Multiple Imputation and Its Application year: 2013 ident: 2021120111530687000_ref41 doi: 10.1002/9781119942283 – volume: 171 issue: 7 year: 2017 ident: 2021120111530687000_ref15 article-title: Effects of promoting long-term, exclusive breastfeeding on adolescent adiposity, blood pressure, and growth trajectories. A secondary analysis of a randomized clinical trial publication-title: JAMA Pediatr doi: 10.1001/jamapediatrics.2017.0698 – volume: 48 start-page: 1294 issue: 4 year: 2019 ident: 2021120111530687000_ref32 article-title: Accounting for missing data in statistical analyses: multiple imputation is not always the answer publication-title: Int J Epidemiol doi: 10.1093/ije/dyz032 – volume: 32 start-page: 4890 issue: 28 year: 2013 ident: 2021120111530687000_ref33 article-title: Multiple imputation for handling systematically missing confounders in meta-analysis of individual participant data publication-title: Stat Med doi: 10.1002/sim.5894 – volume: 42 start-page: 111 issue: 1 year: 2013 ident: 2021120111530687000_ref7 article-title: Cohort profile: the ‘Children of the 90s’—the index offspring of the Avon Longitudinal Study of Parents and Children publication-title: Int J Epidemiol doi: 10.1093/ije/dys064 – volume: 13 start-page: 397 issue: 4 year: 1996 ident: 2021120111530687000_ref46 article-title: The uses and abuses of meta-analysis publication-title: Fam Pract doi: 10.1093/fampra/13.4.397 – volume: 13 start-page: 47 year: 2015 ident: 2021120111530687000_ref4 article-title: Life course trajectories of alcohol consumption in the United Kingdom using longitudinal data from nine cohorts publication-title: BMC Med doi: 10.1186/s12916-015-0273-z – volume: 30 start-page: 14 issue: 1 year: 2006 ident: 2021120111530687000_ref11 article-title: The impact of childhood body mass index on timing of puberty, adult stature and obesity: a follow-up study based on adolescent anthropometry recorded at Christ’s Hospital (1936–1964) publication-title: Int J Obes (Lond) doi: 10.1038/sj.ijo.0803156 – volume: 86 start-page: 907 issue: 4 year: 2007 ident: 2021120111530687000_ref9 article-title: Birth weight; postnatal, infant, and childhood growth; and obesity in young adulthood: evidence from the Barry Caerphilly Growth Study publication-title: Am J Clin Nutr doi: 10.1093/ajcn/86.4.907 – volume-title: Regression Modelling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis year: 2006 ident: 2021120111530687000_ref25 – volume: 16 start-page: 124 issue: 1 year: 2018 ident: 2021120111530687000_ref45 article-title: Association of longitudinal alcohol consumption trajectories with coronary heart disease: a meta-analysis of six cohort studies using individual participant data publication-title: BMC Med doi: 10.1186/s12916-018-1123-6 – ident: 2021120111530687000_ref17 – volume: 2 start-page: 59 issue: 1 year: 1988 ident: 2021120111530687000_ref43 article-title: The longitudinal study of the Northern Finland Birth Cohort of 1966 publication-title: Paediatr Perinat Epidemiol doi: 10.1111/j.1365-3016.1988.tb00180.x – volume: 35 start-page: 2938 issue: 17 year: 2016 ident: 2021120111530687000_ref48 article-title: Multiple imputation for IPD meta-analysis: allowing for heterogeneity and studies with missing covariates publication-title: Stat Med doi: 10.1002/sim.6837 – volume: 182 start-page: 1033 issue: 12 year: 2015 ident: 2021120111530687000_ref16 article-title: Toward rigorous data harmonization in cancer epidemiology research: one approach publication-title: Am J Epidemiol – volume: 43 start-page: 429 issue: 3 year: 1994 ident: 2021120111530687000_ref24 article-title: Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling publication-title: Appl Stat doi: 10.2307/2986270 – volume: 25 start-page: 1854 issue: 5 year: 2016 ident: 2021120111530687000_ref14 article-title: Linear spline multilevel models for summarising childhood growth trajectories: a guide to their application using examples from five birth cohorts publication-title: Stat Methods Med Res doi: 10.1177/0962280213503925 – volume: 58 start-page: 695 issue: 5 year: 2018 ident: 2021120111530687000_ref35 article-title: A comparison of multilevel imputation schemes for random coefficient models: fully conditional specification and joint model imputation with random covariance matrices publication-title: Multivar Behav Res doi: 10.1080/00273171.2018.1477040 – volume: 8 start-page: 551 issue: 5 year: 1989 ident: 2021120111530687000_ref26 article-title: Flexible regression models with cubic splines publication-title: Stat Med doi: 10.1002/sim.4780080504 – volume: 29 start-page: 504 issue: 4 year: 2010 ident: 2021120111530687000_ref30 article-title: Real longitudinal data analysis for real people: building a good enough mixed model publication-title: Stat Med doi: 10.1002/sim.3775 – volume-title: Multivariable Model-Building: A Pragmatic Approach to Regression Analysis Based on Fractional Polynomials for Modelling Continuous Variables year: 2008 ident: 2021120111530687000_ref27 doi: 10.1002/9780470770771 – volume: 43 start-page: 316 issue: 3 year: 2018 ident: 2021120111530687000_ref36 article-title: Multiple imputation of missing data at level 2: a comparison of fully conditional and joint modeling in multilevel designs publication-title: J Educ Behav Stat doi: 10.3102/1076998617738087 – volume: 42 start-page: 97 issue: 1 year: 2013 ident: 2021120111530687000_ref6 article-title: Cohort profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort publication-title: Int J Epidemiol doi: 10.1093/ije/dys066 – volume-title: Linear Mixed Models for Longitudinal Data year: 2001 ident: 2021120111530687000_ref21 – volume: 38 start-page: 3540 issue: 19 year: 2019 ident: 2021120111530687000_ref5 article-title: Using data from multiple studies to develop a child growth correlation matrix publication-title: Stat Med doi: 10.1002/sim.7696 – volume: 45–46 start-page: 75 issue: 1-2 year: 2002 ident: 2021120111530687000_ref18 article-title: The National Statistics Socio-Economic Classification: unifying official and sociological approaches to the conceptualisation and measurement of social class in the United Kingdom publication-title: Sociétés Contemporaines doi: 10.3917/soco.045.0075 – volume: 48 start-page: 1004 issue: 3 year: 2019 ident: 2021120111530687000_ref49 article-title: Use of a pooled cohort to impute cardiovascular disease risk factors across the adult life course publication-title: Int J Epidemiol doi: 10.1093/ije/dyy264 |
SSID | ssj0011950 |
Score | 2.4514413 |
Snippet | Longitudinal data are necessary to reveal changes within an individual as he or she ages. However, rarely will a single cohort study capture data throughout a... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2680 |
SubjectTerms | Adolescent Age Distribution Aging - physiology Body-Weight Trajectory Breastfeeding & lactation Child Child, Preschool Cohort analysis Data Interpretation, Statistical Female Humans Infant Life Change Events Life span Longitudinal Studies Male Missing data Practice of Epidemiology Prospective Studies Republic of Belarus Sociodemographic Factors United Kingdom Within-subjects design Young Adult |
Title | Combining Longitudinal Data From Different Cohorts to Examine the Life-Course Trajectory |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34215868 https://www.proquest.com/docview/2842564452 https://www.proquest.com/docview/2548405678 https://pubmed.ncbi.nlm.nih.gov/PMC8634562 |
Volume | 190 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS8MwFA7igwgiOm_zGmFPQlnWJr08inN490VhbyVXtqmtuA7133vSZsWNoc85bUJPT74vOTeEWkRpxqWWnrIRrjQ0zOOcSY8qolWHGpYwm5x8_xBePdObPuu7ANnxAhd-ErT5SLdfPrkA6IKtFuDXlsh_euzXzgLbyXTKcm35O5eGN_fsDPDMJLP94pTzoZG_sKa3gdYdScTnlVY30ZLOGmjl3rnBG2itumzDVQ7RFuqDVYuy0wO-y20Doomyza5wlxcc9z7yN9x1fVAKfJEPrJMAFzm-_OJv8D4MHBDfDY32bAO7scaAX6PyMv97Gz33Lp8urjzXMsGTjISFFwoSSW50R0QR2KsgTMIGpuJOoBIRx1QxSRMOrAEmFQD1HSoSQwxThCg_IUGwg5azPNN7CCuqfV8YQLlQUml0wkxgfY4mIYwDr2iis-n3TKWrJ27bWrymlV87SGGtqfv4TdSqhd-rMhqLxU5AMX9LHE6VljprG6e-9SUCsWOwqNN6GOzEOj94pvMJyMDRDMgpYHMT7VY6rucJKBCfOISRaEb7tYCtwT07kg0HZS3uOAzsGXL_34UfoFXfhsOUkTCHaLn4mOgj4DOFOAYmf317XP7TP9r29k0 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+Longitudinal+Data+From+Different+Cohorts+to+Examine+the+Life-Course+Trajectory&rft.jtitle=American+journal+of+epidemiology&rft.au=Hughes%2C+Rachael+A&rft.au=Tilling%2C+Kate&rft.au=Lawlor%2C+Deborah+A&rft.date=2021-12-01&rft.issn=0002-9262&rft.eissn=1476-6256&rft.volume=190&rft.issue=12&rft.spage=2680&rft.epage=2689&rft_id=info:doi/10.1093%2Faje%2Fkwab190&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_aje_kwab190 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9262&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9262&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9262&client=summon |