Biosynthesis of the cell adhesion molecule uvomorulin (E-cadherin) in Madin-Darby canine kidney epithelial cells

The Ca(2+)-dependent cell adhesion molecule uvomorulin is a transmembrane glycoprotein that functions at the cell surface to regulate epithelial cell recognition and adhesion. We have investigated the temporal and spatial regulation of uvomorulin biosynthesis and cell surface expression in Madin-Dar...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 266; no. 29; pp. 19672 - 19680
Main Authors SHORE, E. M, NELSON, W. J
Format Journal Article
LanguageEnglish
Published Bethesda, MD American Society for Biochemistry and Molecular Biology 15.10.1991
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Ca(2+)-dependent cell adhesion molecule uvomorulin is a transmembrane glycoprotein that functions at the cell surface to regulate epithelial cell recognition and adhesion. We have investigated the temporal and spatial regulation of uvomorulin biosynthesis and cell surface expression in Madin-Darby canine kidney epithelial cells. We show that uvomorulin is synthesized as a precursor polypeptide (Mr 135,000) that is core glycosylated in the endoplasmic reticulum. The precursor is processed to the mature polypeptide (Mr 120,000) shortly after addition of complex carbohydrate groups in the late Golgi complex, but prior to delivery of the polypeptide to the cell surface. However, glycosylation is not required for either efficient processing of the precursor or transport of uvomorulin to the cell surface. At the cell surface, uvomorulin is turned over rapidly (t1/2 approximately 5 h). Induction of Ca(2+)-dependent cell-cell contact results in rapid localization of cell surface uvomorulin to regions of contact and an increase in the proportion of uvomorulin that is insoluble in buffers containing Triton X-100. These results indicate several regulatory steps in the biosynthesis and cell surface expression of uvomorulin in epithelial cells.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(18)55045-6