The Role of Mitochondrial Porins and the Permeability Transition Pore in Learning and Synaptic Plasticity

Mitochondrial outer membrane permeability is conferred by a family of porin proteins. Mitochondrial porins conduct small molecules and constitute one component of the permeability transition pore that opens in response to apoptotic signals. Because mitochondrial porins have significant roles in dive...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 277; no. 21; pp. 18891 - 18897
Main Authors Weeber, Edwin J., Levy, Michael, Sampson, Margaret J., Anflous, Keltoum, Armstrong, Dawna L., Brown, Sarah E., Sweatt, J. David, Craigen, William J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 24.05.2002
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mitochondrial outer membrane permeability is conferred by a family of porin proteins. Mitochondrial porins conduct small molecules and constitute one component of the permeability transition pore that opens in response to apoptotic signals. Because mitochondrial porins have significant roles in diverse cellular processes including regulation of mitochondrial ATP and calcium flux, we sought to determine their importance in learning and synaptic plasticity in mice. We show that fear conditioning and spatial learning are disrupted in porin-deficient mice. Electrophysiological recordings of porin-deficient hippocampal slices reveal deficits in long and short term synaptic plasticity. Inhibition of the mitochondrial permeability transition pore by cyclosporin A in wild-type hippocampal slices reproduces the electrophysiological phenotype of porin-deficient mice. These results demonstrate a dynamic functional role for mitochondrial porins and the permeability transition pore in learning and synaptic plasticity.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M201649200