Evidence for Distinct Roles in Catalysis for Residues of the Serine-Serine-Lysine Catalytic Triad of Fatty Acid Amide Hydrolase
Fatty acid amide hydrolase (FAAH) is a mammalian amidase signature enzyme that inactivates neuromodulatory fatty acid amides, including the endogenous cannabinoid anandamide and the sleep-inducing substance oleamide. The recent determination of the three-dimensional structures of FAAH and two distan...
Saved in:
Published in | The Journal of biological chemistry Vol. 278; no. 39; pp. 37393 - 37399 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
26.09.2003
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fatty acid amide hydrolase (FAAH) is a mammalian amidase signature enzyme that inactivates neuromodulatory fatty acid amides, including the endogenous cannabinoid anandamide and the sleep-inducing substance oleamide. The recent determination of the three-dimensional structures of FAAH and two distantly related bacterial amidase signature enzymes indicates that these enzymes employ an unusual serine-serine-lysine triad for catalysis (Ser-241/Ser-217/Lys-142 in FAAH). Mutagenesis of each of the triad residues in FAAH has been shown to severely reduce amidase activity; however, how these residues contribute, both individually and in cooperation, to catalysis remains unclear. Here, through a combination of site-directed mutagenesis, enzyme kinetics, and chemical labeling experiments, we provide evidence that each FAAH triad residue plays a distinct role in catalysis. In particular, the mutation of Lys-142 to alanine indicates that this residue functions as both a base involved in the activation of the Ser-241 nucleophile and an acid that participates in the protonation of the substrate leaving group. This latter property appears to support the unusual ability of FAAH to hydrolyze amides and esters at equivalent rates. Interestingly, although structural evidence indicates that the impact of Lys-142 on catalysis probably occurs through the bridging Ser-217, the mutation of this latter residue to alanine impaired catalytic activity but left the amide/ester hydrolysis ratios of FAAH intact. Collectively, these findings suggest that FAAH possesses a specialized active site structure dedicated to a mechanism for competitive amide and ester hydrolysis where nucleophile attack and leaving group protonation occur in a coordinated manner dependent on Lys-142. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M303922200 |