Quantitative analysis of total serum glycome in human and mouse

Model mice are frequently used in drug discovery research. Knowledge of similarities and differences between the mouse and human glycomes is critical when model mice are used for the discovery of glycan‐related biomarkers and targets for therapeutic intervention. Since few comparative glycomic studi...

Full description

Saved in:
Bibliographic Details
Published inProteomics (Weinheim) Vol. 16; no. 21; pp. 2747 - 2758
Main Authors Yoshida, Yasunobu, Furukawa, Jun-ichi, Naito, Shoichi, Higashino, Kenichi, Numata, Yoshito, Shinohara, Yasuro
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.11.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Model mice are frequently used in drug discovery research. Knowledge of similarities and differences between the mouse and human glycomes is critical when model mice are used for the discovery of glycan‐related biomarkers and targets for therapeutic intervention. Since few comparative glycomic studies between human and mouse have been conducted, we performed a comprehensive comparison of the major classes of glycans in human and mouse sera using mass spectrometric and liquid chromatographic analyses. Up to 131 serum glycans, including N‐glycans, free oligosaccharides (fOSs), glycosaminoglycans, O‐glycans, and glycosphingolipid (GSL)‐glycans, were quantified. In both serum samples, N‐glycans were the most abundant in the total serum glycome, while fOSs were the least abundant. As expected, the diversity of sialic acid (i.e. Neu5Ac vs. Neu5Gc) was the major species difference between human and mouse in terms of N‐ and O‐glycosylation, while GSL‐glycomic profiles were completely different, even when the sialic acid diversity was taken into consideration. Furthermore, total serum glycomics of STAM mouse were unveiled as an initial step to identify novel biomarkers of liver diseases, with which we could identify several glycans with expression significantly increased or decreased expression.
Bibliography:Ministry of Education, Culture, Sports, Science and Technology
istex:1CDCF08D514F5DB87D35E6726DC18CEA0C719B31
ark:/67375/WNG-Q6FHLMN4-P
ArticleID:PMIC12495
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1615-9853
1615-9861
DOI:10.1002/pmic.201500550