Dynamic DNA Assemblies in Biomedical Applications
Deoxyribonucleic acid (DNA) has been widely used to construct homogeneous structures with increasing complexity for biological and biomedical applications due to their powerful functionalities. Especially, dynamic DNA assemblies (DDAs) have demonstrated the ability to simulate molecular motions and...
Saved in:
Published in | Advanced science Vol. 7; no. 14; pp. 2000557 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.07.2020
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Deoxyribonucleic acid (DNA) has been widely used to construct homogeneous structures with increasing complexity for biological and biomedical applications due to their powerful functionalities. Especially, dynamic DNA assemblies (DDAs) have demonstrated the ability to simulate molecular motions and fluctuations in bionic systems. DDAs, including DNA robots, DNA probes, DNA nanochannels, DNA templates, etc., can perform structural transformations or predictable behaviors in response to corresponding stimuli and show potential in the fields of single molecule sensing, drug delivery, molecular assembly, etc. A wave of exploration of the principles in designing and usage of DDAs has occurred, however, knowledge on these concepts is still limited. Although some previous reviews have been reported, systematic and detailed reviews are rare. To achieve a better understanding of the mechanisms in DDAs, herein, the recent progress on the fundamental principles regarding DDAs and their applications are summarized. The relative assembly principles and computer‐aided software for their designing are introduced. The advantages and disadvantages of each software are discussed. The motional mechanisms of the DDAs are classified into exogenous and endogenous stimuli‐triggered responses. The special dynamic behaviors of DDAs in biomedical applications are also summarized. Moreover, the current challenges and future directions of DDAs are proposed.
Recently, dynamic deoxyribonucleic acid (DNA) assemblies have emerged as promising platforms for diagnostics and therapeutics in biomedical applications. This work provides an overview of dynamic DNA assemblies, detailing their designing software, motional mechanisms, and dynamic behaviors in biomedical applications. The mechanisms are classified into exogenous and endogenous stimuli‐triggered responses. This work also summarizes this area of research and proposes future directions. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.202000557 |