The Genome Analysis of the Human Lung-Associated Streptomyces sp. TR1341 Revealed the Presence of Beneficial Genes for Opportunistic Colonization of Human Tissues
sp. TR1341 was isolated from the sputum of a man with a history of lung and kidney tuberculosis, recurrent respiratory infections, and COPD. It produces secondary metabolites associated with cytotoxicity and immune response modulation. In this study, we complement our previous results by identifying...
Saved in:
Published in | Microorganisms (Basel) Vol. 9; no. 8; p. 1547 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
21.07.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | sp. TR1341 was isolated from the sputum of a man with a history of lung and kidney tuberculosis, recurrent respiratory infections, and COPD. It produces secondary metabolites associated with cytotoxicity and immune response modulation. In this study, we complement our previous results by identifying the genetic features associated with the production of these secondary metabolites and other characteristics that could benefit the strain during its colonization of human tissues (virulence factors, modification of the host immune response, or the production of siderophores). We performed a comparative phylogenetic analysis to identify the genetic features that are shared by environmental isolates and human respiratory pathogens. The results showed a high genomic similarity of
sp. TR1341 to the plant-associated
sp. endophyte_N2, inferring a soil origin of the strain. Putative virulence genes, such as mammalian cell entry (
) genes were not detected in the TR1341's genome. The presence of a type VII secretion system, distinct from the ones found in
species, suggests a different colonization strategy than the one used by other actinomycete lung pathogens. We identified a higher diversity of genes related to iron acquisition and demonstrated that the strain produces ferrioxamine B in vitro. These results indicate that TR1341 may have an advantage in colonizing environments that are low in iron, such as human tissue. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Current address: Faculty of Science and Technology, Free University of Bozen-Bolzano, Universitätsplatz 5—piazza Università 5, 39100 Bozen-Bolzano, Italy. Both authors contributed equally. |
ISSN: | 2076-2607 2076-2607 |
DOI: | 10.3390/microorganisms9081547 |