Apolipoprotein e mimetic peptide dramatically lowers plasma cholesterol and restores endothelial function in watanabe heritable hyperlipidemic rabbits
These studies were designed to determine whether the dual-domain peptide with a class A amphipathic helix linked to the receptor-binding domain of apolipoprotein (apo) E (Ac-hE-18A-NH2) possesses both antidyslipidemic and antiinflammatory properties. A single bolus (15 mg/kg IV) of Ac-hE-18A-NH2 tha...
Saved in:
Published in | Circulation (New York, N.Y.) Vol. 111; no. 23; pp. 3112 - 3118 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hagerstown, MD
Lippincott Williams & Wilkins
14.06.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | These studies were designed to determine whether the dual-domain peptide with a class A amphipathic helix linked to the receptor-binding domain of apolipoprotein (apo) E (Ac-hE-18A-NH2) possesses both antidyslipidemic and antiinflammatory properties.
A single bolus (15 mg/kg IV) of Ac-hE-18A-NH2 that contains LRKLRKRLLR (141- to 150-residue region of apo E) covalently linked to apo A-I mimetic peptide 18A not only reduced plasma cholesterol levels (baseline, 562+/-29.0 mg/dL versus 287.7+/-22.0 mg/dL at 18 hours, P<0.001) in the Watanabe heritable hyperlipidemic rabbit model but also significantly improved arterial endothelial function. This improvement was associated with a reduction in 2 markers of oxidative stress. First, the plasma lipid hydroperoxide content was reduced significantly, an effect associated with a 5-fold increase in HDL paraoxonase activity. Second, the formation of superoxide anion, a scavenger of nitric oxide, was also significantly reduced in arteries of these animals.
Because dyslipidemia and endothelial dysfunction are common features of the atherosclerotic disease process, this unique dual-domain peptide has ideal composite properties that ameliorate key contributory factors to atherosclerosis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0009-7322 1524-4539 |
DOI: | 10.1161/CIRCULATIONAHA.104.497107 |