Microengineered Conductive Elastomeric Electrodes for Long-Term Electrophysiological Measurements with Consistent Impedance under Stretch

In this research, we develop a micro-engineered conductive elastomeric electrode for measurements of human bio-potentials with the absence of conductive pastes. Mixing the biocompatible polydimethylsiloxane (PDMS) silicone with other biocompatible conductive nano-particles further provides the mater...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 15; no. 10; pp. 26906 - 26920
Main Authors Hu, Dinglong, Cheng, Tin, Xie, Kai, Lam, Raymond
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.10.2015
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s151026906

Cover

Loading…
More Information
Summary:In this research, we develop a micro-engineered conductive elastomeric electrode for measurements of human bio-potentials with the absence of conductive pastes. Mixing the biocompatible polydimethylsiloxane (PDMS) silicone with other biocompatible conductive nano-particles further provides the material with an electrical conductivity. We apply micro-replica mold casting for the micro-structures, which are arrays of micro-pillars embedded between two bulk conductive-PDMS layers. These micro-structures can reduce the micro-structural deformations along the direction of signal transmission; therefore the corresponding electrical impedance under the physical stretch by the movement of the human body can be maintained. Additionally, we conduct experiments to compare the electrical properties between the bulk conductive-PDMS material and the microengineered electrodes under stretch. We also demonstrate the working performance of these micro-engineered electrodes in the acquisition of the 12-lead electrocardiographs (ECG) of a healthy subject. Together, the presented gel-less microengineered electrodes can provide a more convenient and stable bio-potential measurement platform, making tele-medical care more achievable with reduced technical barriers for instrument installation performed by patients/users themselves.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ISSN:1424-8220
1424-8220
DOI:10.3390/s151026906