Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers
In this contribution, we present the preparation and structural characterization of a new type of alternative (sodium silicate-free) geopolymer system. A new procedure of geopolymer synthesis based on the preparation of a reactive geopolymer precursor by direct calcinations of low-quality kaolin wit...
Saved in:
Published in | Journal of materials science Vol. 42; no. 22; pp. 9267 - 9275 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer
01.11.2007
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this contribution, we present the preparation and structural characterization of a new type of alternative (sodium silicate-free) geopolymer system. A new procedure of geopolymer synthesis based on the preparation of a reactive geopolymer precursor by direct calcinations of low-quality kaolin with Na/K hydroxides is introduced. The subsequent formation of geopolymer matrix does not require activation by alkaline silicate solution. The compact and hardened material was prepared only by adding a small amount of water. Besides the introduction of a new synthetic procedure, we focused also on the systematic study of chemical structure, mineralogical composition and hydrothermal stability of the prepared geopolymer systems as seen by solid-state NMR spectroscopy and powder X-ray diffraction (XRD). An important part of our contribution is the demonstration of structural and mineralogical changes induced by hydrothermal treatment and long-term aging of the prepared geopolymers. It was found that redistribution of basic structural units (SiO44− and AlO45−) and gradual formation of zeolite fractions can be related to the observed changes in mechanical properties. Up to a certain level, the presence of zeolites enhances the mechanical properties of the prepared geopolymer systems. However, the additional formation of a new generation of zeolite fractions, occurring over the long-term period causes an inversion of this trend and a dramatic reduction of mechanical strength. Nevertheless, formation of the geopolymer matrix by alkaline and thermal activation of low-quality kaolin has the potential to be used in ecological problems solving (solidification of powdered and dangerous waste materials). |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-007-1910-5 |