Effects of chronic opioid exposure on guinea pig mu opioid receptor in Chinese hamster ovary cells: Comparison with human and rat receptor

Chronic opioid treatment leads to agonist-specific effects at the mu opioid receptor. The molecular mechanisms resulting from chronic opioid exposure include desensitization, internalization and down-regulation of membrane-bound mu opioid receptors (MOP). The purpose of this study was to compare the...

Full description

Saved in:
Bibliographic Details
Published inBiochemical pharmacology Vol. 73; no. 11; pp. 1818 - 1828
Main Authors Wallisch, Michael, Nelson, Cole S., Mulvaney, Julia M., Hernandez, Heather S., Smith, Sue Ann, Olsen, George D.
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 01.06.2007
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chronic opioid treatment leads to agonist-specific effects at the mu opioid receptor. The molecular mechanisms resulting from chronic opioid exposure include desensitization, internalization and down-regulation of membrane-bound mu opioid receptors (MOP). The purpose of this study was to compare the cellular regulation of guinea pig, human and rat MOP expressed in Chinese hamster ovary (CHO) cells, following exposure to two clinically important opioids, morphine and methadone. MOP expressing CHO cells were treated in culture with methadone or morphine for up to 48 h. Radioligand diprenorphine and [ d-AIa 2, N-Me-Phe 4,Gly 5-ol]-enkephalin (DAMGO)-stimulated GTPγS binding assays were carried out using paired control and opioid-exposed CHO cells. Methadone induced downregulation of the mu opioid receptor, while morphine induced desensitization of the receptor for all three species. Furthermore, morphine predominantly decreased the potency of DAMGO to stimulate GTPγS binding, whereas methadone primarily reduced its efficacy. Changes in DAMGO potency and efficacy differed among species and depended on the opioid used to treat the cells. Our results showed similarities between guinea pig and human MOP for morphine-induced desensitization, but identified differences between the two for methadone-induced desensitization. In contrast, human and rat MOP differed in response to morphine treatment, but were not distinct in their response to methadone treatment. The guinea pig is an excellent and established animal model to study opioid effects, but its molecular opioid pharmacology has not been investigated thus far. These results can assist in understanding species differences in the effects of opioid ligands activating the mu opioid receptor.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-2952
1873-2968
DOI:10.1016/j.bcp.2007.02.001