Symmetry enhancement in a two-logarithm matrix model and the canonical tensor model
Abstract We study a one-matrix model of a real symmetric matrix with a potential which is a sum of two logarithmic functions and a harmonic one. This two-logarithm matrix model is the absolute square norm of a toy wave function which is obtained by replacing the tensor argument of the wave function...
Saved in:
Published in | Progress of theoretical and experimental physics Vol. 2021; no. 4 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract
We study a one-matrix model of a real symmetric matrix with a potential which is a sum of two logarithmic functions and a harmonic one. This two-logarithm matrix model is the absolute square norm of a toy wave function which is obtained by replacing the tensor argument of the wave function of the canonical tensor model (CTM) with a matrix. We discuss a symmetry enhancement phenomenon in this matrix model and show that symmetries and dimensions of emergent spaces are stable only in a phase which exists exclusively for the positive cosmological constant case in the sense of CTM. This would imply the importance of the positivity of the cosmological constant in the emergence phenomena in CTM. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2050-3911 2050-3911 |
DOI: | 10.1093/ptep/ptab034 |