Radioactive Beams for Image-Guided Particle Therapy: The BARB Experiment at GSI

Several techniques are under development for image-guidance in particle therapy. Positron (β + ) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PE...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in oncology Vol. 11; p. 737050
Main Authors Boscolo, Daria, Kostyleva, Daria, Safari, Mohammad Javad, Anagnostatou, Vasiliki, Äystö, Juha, Bagchi, Soumya, Binder, Tim, Dedes, Georgios, Dendooven, Peter, Dickel, Timo, Drozd, Vasyl, Franczack, Bernhard, Geissel, Hans, Gianoli, Chiara, Graeff, Christian, Grahn, Tuomas, Greiner, Florian, Haettner, Emma, Haghani, Roghieh, Harakeh, Muhsin N., Horst, Felix, Hornung, Christine, Hucka, Jan-Paul, Kalantar-Nayestanaki, Nasser, Kazantseva, Erika, Kindler, Birgit, Knöbel, Ronja, Kuzminchuk-Feuerstein, Natalia, Lommel, Bettina, Mukha, Ivan, Nociforo, Chiara, Ishikawa, Shunki, Lovatti, Giulio, Nitta, Munetaka, Ozoemelam, Ikechi, Pietri, Stephane, Plaß, Wolfgang R., Prochazka, Andrej, Purushothaman, Sivaji, Reidel, Claire-Anne, Roesch, Heidi, Schirru, Fabio, Schuy, Christoph, Sokol, Olga, Steinsberger, Timo, Tanaka, Yoshiki K., Tanihata, Isao, Thirolf, Peter, Tinganelli, Walter, Voss, Bernd, Weber, Uli, Weick, Helmut, Winfield, John S., Winkler, Martin, Zhao, Jianwei, Scheidenberger, Christoph, Parodi, Katia, Durante, Marco
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 19.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Several techniques are under development for image-guidance in particle therapy. Positron (β + ) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by β + -emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using β + -radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separation with the fragment separator FRS in the FAIR-phase-0 in Darmstadt, it is now possible to reach radioactive ion beams with sufficient intensity to treat a tumor in small animals. This was the motivation of the BARB (Biomedical Applications of Radioactive ion Beams) experiment that is ongoing at GSI in Darmstadt. This paper will present the plans and instruments developed by the BARB collaboration for testing the use of radioactive beams in cancer therapy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Cancer Imaging and Image-directed Interventions, a section of the journal Frontiers in Oncology
Reviewed by: Guangming Zhou, Soochow University Medical College (SUMC), China; Hua Zhu, Beijing Cancer Hospital, China
Edited by: Haibin Shi, Soochow University, China
ISSN:2234-943X
2234-943X
DOI:10.3389/fonc.2021.737050