Claulansine F promotes neuritogenesis in PC12 cells via the ERK signaling pathway
Aim: To study the effects of Claulansine F (Clau F), a carbazole alkaloid isolated from the stem of Clausena lansium (Lour) Skeels, on neuritogenesis of PC12 cells, and to elucidate the mechanism of action. Methods: Neuritogenesis of PC12 cells was quantified under an inverted microscope. Expression...
Saved in:
Published in | Acta pharmacologica Sinica Vol. 34; no. 12; pp. 1499 - 1507 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Aim: To study the effects of Claulansine F (Clau F), a carbazole alkaloid isolated from the stem of Clausena lansium (Lour) Skeels, on neuritogenesis of PC12 cells, and to elucidate the mechanism of action. Methods: Neuritogenesis of PC12 cells was quantified under an inverted microscope. Expression of the neurite outgrowth marker GAP-43 was detected using immunofluorescence. GAP-43 transcription was measured using RT-PCR. Cell viability was evaluated with MTT assay. The levels of phosphor-ERK1/2, phosphor-CREB, phosphor-AKT and acetylate-p53 in the cells were examined using Western blotting analyses. Results: Clau F (10-100 pmol/L) significantly increased the percentage of PC12 cells bearing neurites. Clau F markedly increased the expression of GAP-43 in the cells. The efficiency of Clau F (10 pmol/L) in increasing neuritogenesis and GAP-43 expression was comparable to that of nerve growth factor (50 ng/mL). In addition, Clau F completely blocked the proliferation of PC12 cells within 7 d of incubation, whereas it did not cause cell death in cultured rat cortical neurons. Treatment of PC12 cells with Clau F activated both ERK and AKT signaling pathways. Co-treatment of PC12 cells with the specific ERK inhibitor PD98059, but not the specific PI3K inhibitor LY294002, blocked Clau F-induced neuritogenesis and GAP-43 upregulation. Conclusion: Clau F promotes neuritogenesis in PC12 cells specifically via activation of the ERK signaling pathway. |
---|---|
Bibliography: | Claulansine F; PC12 cell; neuritogenesis; GAP-43; ERK1/2; nerve growth factor; neurodegenerative disease Aim: To study the effects of Claulansine F (Clau F), a carbazole alkaloid isolated from the stem of Clausena lansium (Lour) Skeels, on neuritogenesis of PC12 cells, and to elucidate the mechanism of action. Methods: Neuritogenesis of PC12 cells was quantified under an inverted microscope. Expression of the neurite outgrowth marker GAP-43 was detected using immunofluorescence. GAP-43 transcription was measured using RT-PCR. Cell viability was evaluated with MTT assay. The levels of phosphor-ERK1/2, phosphor-CREB, phosphor-AKT and acetylate-p53 in the cells were examined using Western blotting analyses. Results: Clau F (10-100 pmol/L) significantly increased the percentage of PC12 cells bearing neurites. Clau F markedly increased the expression of GAP-43 in the cells. The efficiency of Clau F (10 pmol/L) in increasing neuritogenesis and GAP-43 expression was comparable to that of nerve growth factor (50 ng/mL). In addition, Clau F completely blocked the proliferation of PC12 cells within 7 d of incubation, whereas it did not cause cell death in cultured rat cortical neurons. Treatment of PC12 cells with Clau F activated both ERK and AKT signaling pathways. Co-treatment of PC12 cells with the specific ERK inhibitor PD98059, but not the specific PI3K inhibitor LY294002, blocked Clau F-induced neuritogenesis and GAP-43 upregulation. Conclusion: Clau F promotes neuritogenesis in PC12 cells specifically via activation of the ERK signaling pathway. 31-1347/R ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 1671-4083 1745-7254 1745-7254 |
DOI: | 10.1038/aps.2013.95 |