Craniofacial sequelae of lesions to facial and trigeminal motor nuclei in growing rats

Unilateral electrolytic lesions were made in the left-side facial motor nucleus (FMNu) of six Sprague-Dawley rats at 35 days of age in order to correlate craniofacial sequelae with changed motoneuron function. Experimental and control rats were killed at 22, 32, 42, and 52 days postoperatively to pr...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physical anthropology Vol. 76; no. 1; p. 87
Main Author Byrd, K E
Format Journal Article
LanguageEnglish
Published United States 01.05.1988
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Unilateral electrolytic lesions were made in the left-side facial motor nucleus (FMNu) of six Sprague-Dawley rats at 35 days of age in order to correlate craniofacial sequelae with changed motoneuron function. Experimental and control rats were killed at 22, 32, 42, and 52 days postoperatively to provide muscle weight, brain histology, and dry skull preparations for analyses. Dissection, muscle weight, motoneuron count, and osteometric data revealed that lesion-side facial and masticatory muscles were affected by the lesions. Paired t-tests indicated that significant differences existed between weights of experimental lesion- and nonlesion-side anterior digastric, temporalis, masseteric complex, and medial pterygoid muscles, numbers of facial and trigeminal motoneurons, and several skeletal dimensions of the skull. Basi-cranial dimensions of experimental animals were least affected by the lesion, whereas zygomatic arch, dorsal facial region, and mandibular condyle dimensions were most affected. Statistical analyses also detected significant differences between experimental and control groups for several skeletal dimensions of the skull. Data indicated that damage to the trigeminal motor nucleus (TMNu) was secondary to the primary lesion in the FMNu. Motoneurons within the facial and trigeminal neuromuscular complexes (FNC and TNC) play an important role in craniofacial growth and development.
ISSN:0002-9483
DOI:10.1002/ajpa.1330760108