Up‐regulation of NMDA receptor subunit and post‐synaptic density protein expression in the thalamus of elderly patients with schizophrenia

Numerous studies have described structural and functional abnormalities of the thalamus in schizophrenia, but surprisingly few studies have examined neurochemical abnormalities that accompany these pathological changes. We previously identified abnormalities of multiple molecules associated with glu...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurochemistry Vol. 98; no. 4; pp. 1114 - 1125
Main Authors Clinton, Sarah M., Haroutunian, Vahram, Meador‐Woodruff, James H.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.08.2006
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Numerous studies have described structural and functional abnormalities of the thalamus in schizophrenia, but surprisingly few studies have examined neurochemical abnormalities that accompany these pathological changes. We previously identified abnormalities of multiple molecules associated with glutamatergic neurotransmission, including changes in NMDA receptor subunit transcripts and binding sites and NMDA receptor‐associated post‐synaptic density (PSD) protein transcripts in the thalamus of elderly patients with schizophrenia. In the present study, we performed western blot analysis to determine whether protein levels of NMDA receptor subunits (NR1, NR2A, NR2B) and associated PSD proteins (NF‐L, PSD95, SAP102) are altered in schizophrenia. Thalamic tissue from each subject was grossly dissected into two regions: a dorsomedial region containing limbic‐associated dorsomedial, anterior and central medial thalamic nuclei; and a ventral thalamus region that primarily consisted of the ventral lateral nucleus. We observed increased protein expression of the NR2B NMDA receptor subunit and its associated intracellular protein, PSD95, in the dorsomedial thalamus of patients with schizophrenia, but the other molecules were unchanged, and we found no changes in the ventral thalamus. These data provide additional evidence of thalamic neurochemical abnormalities, particularly in thalamic nuclei which project to limbic regions of the brain. Further, these findings provide additional evidence of NMDA receptor alterations in schizophrenia, which may play an important role in the neurobiology of the illness.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3042
1471-4159
DOI:10.1111/j.1471-4159.2006.03954.x