Seasonal variations in Saturn's plasma between the main rings and Enceladus
With the discovery by the Cassini spacecraft of an oxygen atmosphere over Saturn's main rings, and a strong source of water products from the plumes of Saturn's moon Enceladus, our picture of the physics of Saturn's magnetosphere from the main rings to inside the orbit of Enceladus ha...
Saved in:
Published in | Journal of Geophysical Research: Space Physics Vol. 117; no. A3 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
Blackwell Publishing Ltd
01.03.2012
American Geophysical Union |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | With the discovery by the Cassini spacecraft of an oxygen atmosphere over Saturn's main rings, and a strong source of water products from the plumes of Saturn's moon Enceladus, our picture of the physics of Saturn's magnetosphere from the main rings to inside the orbit of Enceladus has changed dramatically. This region contains oxygen ions from the ring atmosphere and water‐group ions from the Enceladus torus. The purpose of this study is to examine ion densities, temperatures, and composition from several equatorial periapsis passes from 2004 to 2010 for the region from 2.4 to 3.5 Saturn radii (∼60,300 km) in addition to Voyager 2 in order to separate contributions from Saturn's ring atmosphere from the water products in the Enceladus torus and to describe the temporal variations in the plasma. Because of the high background due to so‐called penetrating radiation in this region, only six orbits are used in this study. Our analysis indicates that large variations in ion density, temperature, and composition occurred between the Voyager 2 flyby, 2004, and 2010. Although the Enceladus plumes may be variable, we propose that the large change in the ion density from 2004 to equinox near 2010 is due to the seasonal variation in the ring atmosphere. Our interpretation of the plasma data is supported by a simple photochemical model, combining the water products from Enceladus and the seasonal variations in the ring atmosphere.
Key Points
The plasma in Saturn's inner magnetosphere exhibits seasonal variability
Main region of study is on Saturn's plasma between main rings and Enceladus
High radiation background in region makes data analysis of ions difficult |
---|---|
Bibliography: | ArticleID:2011JA017332 istex:6E069A02F692A5005A13128F852D26F690E9B289 ark:/67375/WNG-ZXCJ32Z1-8 Tab-delimited Table 1.Tab-delimited Table 2. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0148-0227 2169-9380 2156-2202 2169-9402 |
DOI: | 10.1029/2011JA017332 |