Preparation of ABS/montmorillonite nanocomposite using a solvent/non-solvent method

Polymer layered silicate nanocomposites have been studied for many years and due to their distinguished properties and applications, it is still the subject of many research programs. There are different methods of preparation, with the melt intercalation method as the mostly used method. Due to the...

Full description

Saved in:
Bibliographic Details
Published inPolymer (Guilford) Vol. 46; no. 15; pp. 5533 - 5540
Main Authors Pourabas, Behzad, Raeesi, Vahid
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 11.07.2005
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Polymer layered silicate nanocomposites have been studied for many years and due to their distinguished properties and applications, it is still the subject of many research programs. There are different methods of preparation, with the melt intercalation method as the mostly used method. Due to the thermal destructive effects of melt mixing on the polymer chains there are currently efforts to develop some new methods of preparation. A solvent/non-solvent method has been developed in this study for the preparation of ABS/clay nanocomposites. ABS nanocomposite is precipitated after addition of ethanol (non-solvent) containing organic modified montmorillonite from a THF solution while it is stirring. A kind of mixing system known as homogenizer has been used in this work. The final product has been determined having an intercalated structure with a uniform interlayer spacing of the silicate layers. The ABS nanocomposites prepared in this work has been studied by X-ray diffraction, FTIR, transmission electron microscope and thermogravimetric analysis. The effect of using homogenizer on the characteristics of the nanocomposites also has been investigated and discussed in several parts of the present work.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0032-3861
1873-2291
DOI:10.1016/j.polymer.2005.04.055