Predator odor fear conditioning: Current perspectives and new directions

Predator odor fear conditioning involves the use of a natural unconditioned stimulus, as opposed to aversive electric foot-shock, to obtain novel information on the neural circuitry associated with emotional learning and memory. Researchers are beginning to identify brain sites associated with condi...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience and biobehavioral reviews Vol. 32; no. 7; pp. 1218 - 1227
Main Authors Takahashi, Lorey K., Chan, Megan M., Pilar, Mark L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.09.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Predator odor fear conditioning involves the use of a natural unconditioned stimulus, as opposed to aversive electric foot-shock, to obtain novel information on the neural circuitry associated with emotional learning and memory. Researchers are beginning to identify brain sites associated with conditioned contextual fear such as the ventral anterior olfactory nucleus, dorsal premammillary nucleus, ventrolateral periaqueductal gray, cuneiform nucleus, and locus coeruleus. In addition, a few studies have reported an involvement of the basolateral and medial nucleus of the amygdala and hippocampus in fear conditioning. However, several important issues concerning the effectiveness of different predator odor unconditioned stimuli to produce fear conditioning, the precise role of brain nuclei in fear conditioning, and the general relation between the current predator odor and the traditional electric foot-shock fear conditioning procedures remain to be satisfactorily addressed. This review discusses the major behavioral results in the current predator odor fear conditioning literature and introduces two novel contextual and auditory fear conditioning models using cat odor. The new models provide critical information on the acquisition of conditioned fear behavior during training and the expression of conditioned responses in the retention test. Future studies adopting fear conditioning procedures that incorporate measures of both unconditioned and conditioned responses during training may lead to broad insights into predator odor fear conditioning and identify specific brain nuclei mediating conditioned stimulus–predator odor unconditioned stimulus associations.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
ObjectType-Review-3
content type line 23
ObjectType-Feature-3
ObjectType-Review-1
ISSN:0149-7634
1873-7528
DOI:10.1016/j.neubiorev.2008.06.001