Strain-driven band inversion and topological aspects in Antimonene

Searching for the two-dimensional (2D) topological insulators (TIs) with large bulk band gaps is the key to achieve room-temperature quantum spin Hall effect (QSHE). Using first-principles calculations, we demonstrated that the recently-proposed antimonene [Zhang et al. , Angew. Chem. Int. Ed. 54, 3...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 5; no. 1; p. 16108
Main Authors Zhao, Mingwen, Zhang, Xiaoming, Li, Linyang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.11.2015
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Searching for the two-dimensional (2D) topological insulators (TIs) with large bulk band gaps is the key to achieve room-temperature quantum spin Hall effect (QSHE). Using first-principles calculations, we demonstrated that the recently-proposed antimonene [Zhang et al. , Angew. Chem. Int. Ed. 54, 3112–3115 (2015)] can be tuned to a 2D TI by reducing the buckling height of the lattice which can be realized under tensile strain. The strain-driven band inversion in the vicinity of the Fermi level is responsible for the quantum phase transition. The buckled configuration of antimonene enables it to endure large tensile strain up to 18% and the resulted bulk band gap can be as large as 270 meV. The tunable bulk band gap makes antimonene a promising candidate material for achieving quantum spin Hall effect (QSH) at high temperatures which meets the requirement of future electronic devices with low power consumption.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/srep16108