Upregulation of the creatine synthetic pathway in skeletal muscles of mature mdx mice

Abstract Duchenne muscular dystrophy (DMD) is a fatal neuromuscular human disease caused by dystrophin deficiency. The mdx mouse lacks dystrophin protein, yet does not exhibit the debilitating DMD phenotype. Investigating compensatory mechanisms in the mdx mouse may shed new insights into modifying...

Full description

Saved in:
Bibliographic Details
Published inNeuromuscular disorders : NMD Vol. 17; no. 8; pp. 639 - 650
Main Authors McClure, Warren C, Rabon, Rick E, Ogawa, Hirofumi, Tseng, Brian S
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 01.08.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Duchenne muscular dystrophy (DMD) is a fatal neuromuscular human disease caused by dystrophin deficiency. The mdx mouse lacks dystrophin protein, yet does not exhibit the debilitating DMD phenotype. Investigating compensatory mechanisms in the mdx mouse may shed new insights into modifying DMD pathogenesis. This study targets two metabolic genes, guanidinoacetate methyltransferase (GAMT) and arginine:glycine amidinotransferase (AGAT) which are required for creatine synthesis. We show that GAMT and AGAT mRNA are up-regulated 5.4- and 1.9-fold respectively in adult mdx muscle compared to C57. In addition, GAMT protein expression is up-regulated at least 2.5-fold in five different muscles of mdx vs. control. Furthermore, we find GAMT immunoreactivity in up to 80% of mature mdx muscle fibers in addition to small regenerating fibers and rare revertants; while GAMT immunoreactivity is equal to background levels in all muscle fibers of mature C57 mice. The up-regulation of the creatine synthetic pathway may help maintain muscle creatine levels and limit cellular energy failure in leaky mdx skeletal muscles. These results may help better understand the mild phenotype of the mdx mouse and may offer new treatment horizons for DMD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0960-8966
1873-2364
DOI:10.1016/j.nmd.2007.04.008