Albumin adsorption on CoCrMo alloy surfaces

Proteins can adsorb on the surface of artificial joints immediately after being implanted. Although research studying protein adsorption on medical material surfaces has been carried out, the mechanism of the proteins’ adsorption which affects the corrosion behaviour of such materials still lacks in...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 5; no. 1; p. 18403
Main Authors Yan, Yu, Yang, Hongjuan, Su, Yanjing, Qiao, Lijie
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.12.2015
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Proteins can adsorb on the surface of artificial joints immediately after being implanted. Although research studying protein adsorption on medical material surfaces has been carried out, the mechanism of the proteins’ adsorption which affects the corrosion behaviour of such materials still lacks in situ observation at the micro level. The adsorption of bovine serum albumin (BSA) on CoCrMo alloy surfaces was studied in situ by AFM and SKPFM as a function of pH and the charge of CoCrMo alloy surfaces. Results showed that when the specimens were uncharged, hydrophobic interaction could govern the process of the adsorption rather than electrostatic interaction and BSA molecules tended to adsorb on the surfaces forming a monolayer in the side-on model. Results also showed that adsorbed BSA molecules could promote the corrosion process for CoCrMo alloys. When the surface was positively charged, the electrostatic interaction played a leading role in the adsorption process. The maximum adsorption occurred at the isoelectric point (pH 4.7) of BSA.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/srep18403