A Unified Framework for Reservoir Computing and Extreme Learning Machines based on a Single Time-delayed Neuron

In this paper we present a unified framework for extreme learning machines and reservoir computing (echo state networks), which can be physically implemented using a single nonlinear neuron subject to delayed feedback. The reservoir is built within the delay-line, employing a number of “virtual” neu...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 5; no. 1; p. 14945
Main Authors Ortín, S., Soriano, M. C., Pesquera, L., Brunner, D., San-Martín, D., Fischer, I., Mirasso, C. R., Gutiérrez, J. M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.10.2015
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper we present a unified framework for extreme learning machines and reservoir computing (echo state networks), which can be physically implemented using a single nonlinear neuron subject to delayed feedback. The reservoir is built within the delay-line, employing a number of “virtual” neurons. These virtual neurons receive random projections from the input layer containing the information to be processed. One key advantage of this approach is that it can be implemented efficiently in hardware. We show that the reservoir computing implementation, in this case optoelectronic, is also capable to realize extreme learning machines, demonstrating the unified framework for both schemes in software as well as in hardware.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/srep14945