Heterogeneous Responses of Ovarian Cancer Cells to Silver Nanoparticles as a Single Agent and in Combination with Cisplatin

We investigated the effects of silver nanoparticle (AgNP) exposure in three ovarian cancer cell lines (A2780, SKOV3, and OVCAR3). We found that AgNPs were highly cytotoxic toward A2780 and SKOV3 cells but OVCAR3 cells were less sensitive to AgNPs. In agreement with the cytotoxicity data, AgNPs cause...

Full description

Saved in:
Bibliographic Details
Published inJournal of nanomaterials Vol. 2017; no. 2017; pp. 1 - 11
Main Authors Singh, Ravi N., Ramirez-Perez, Maria, Swanner, Jessica, Fahrenholtz, Cale D.
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2017
Hindawi
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigated the effects of silver nanoparticle (AgNP) exposure in three ovarian cancer cell lines (A2780, SKOV3, and OVCAR3). We found that AgNPs were highly cytotoxic toward A2780 and SKOV3 cells but OVCAR3 cells were less sensitive to AgNPs. In agreement with the cytotoxicity data, AgNPs caused DNA damage in A2780 and SKOV3 cells, but not in OVCAR3 cells. A2780 and SKOV3 showed higher levels of basal reactive oxygen species (ROS) relative to OVCAR3 cells. AgNP exposure increased ROS levels in both A2780 and SKOV3 cells, but not in OVCAR3 cells. We found that the heterogeneous cytotoxicity was specific to the uptake of intact particles and was not due to differences in sensitivity to silver ions. Furthermore, the combination of AgNPs and standard-of-care platinum therapy, cisplatin (cis-diamminedichloroplatinum(II), CDDP), was synergistic for treatment of A2780 and OVCAR3 cells and the combination of AgNPs and CDDP showed a favorable dose reduction in all cell lines tested. These results provide insight into potential applications of AgNPs for treatment of ovarian cancer.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1687-4110
1687-4129
DOI:10.1155/2017/5107485