Acoustic diagnosis of pulmonary hypertension: automated speech- recognition-inspired classification algorithm outperforms physicians

We hypothesized that an automated speech- recognition-inspired classification algorithm could differentiate between the heart sounds in subjects with and without pulmonary hypertension (PH) and outperform physicians. Heart sounds, electrocardiograms, and mean pulmonary artery pressures (mPAp) were r...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 6; no. 1; p. 33182
Main Authors Kaddoura, Tarek, Vadlamudi, Karunakar, Kumar, Shine, Bobhate, Prashant, Guo, Long, Jain, Shreepal, Elgendi, Mohamed, Coe, James Y, Kim, Daniel, Taylor, Dylan, Tymchak, Wayne, Schuurmans, Dale, Zemp, Roger J., Adatia, Ian
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.09.2016
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We hypothesized that an automated speech- recognition-inspired classification algorithm could differentiate between the heart sounds in subjects with and without pulmonary hypertension (PH) and outperform physicians. Heart sounds, electrocardiograms, and mean pulmonary artery pressures (mPAp) were recorded simultaneously. Heart sound recordings were digitized to train and test speech-recognition-inspired classification algorithms. We used mel-frequency cepstral coefficients to extract features from the heart sounds. Gaussian-mixture models classified the features as PH (mPAp ≥ 25 mmHg) or normal (mPAp < 25 mmHg). Physicians blinded to patient data listened to the same heart sound recordings and attempted a diagnosis. We studied 164 subjects: 86 with mPAp ≥ 25 mmHg (mPAp 41 ± 12 mmHg) and 78 with mPAp < 25 mmHg (mPAp 17 ± 5 mmHg) (p  < 0.005). The correct diagnostic rate of the automated speech-recognition-inspired algorithm was 74% compared to 56% by physicians (p = 0.005). The false positive rate for the algorithm was 34% versus 50% (p = 0.04) for clinicians. The false negative rate for the algorithm was 23% and 68% (p = 0.0002) for physicians. We developed an automated speech-recognition-inspired classification algorithm for the acoustic diagnosis of PH that outperforms physicians that could be used to screen for PH and encourage earlier specialist referral.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present Address: Department of Obstetrics & Gynecology, University of British Columbia and BC Children’s & Women’s Hospital, Vancouver, Canada.
Present address: Amrita School of Medicine, Ponekkara, Kochi, Kerala, India.
Present address: Children’s Heart Center, Kokilaben Dhirubhai Ambani Hospital, Mumbai, India.
Present address: Shreepal Jain 107, Tower Building, Department of Pediatric Cardiac Sciences, Sir H.N. Reliance Foundation Hospital, Raja Ram Mohan Roy Road, Girgaon, Mumbai, Maharashtra, India - 400004.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep33182